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Abstract. This position paper analyses the multidisciplinarity of cogni-
tive research and its challenges from three perspective: the foundations of
cognitive science, which draw from logic and neuroscience and their inter-
connections in studying human logic; computation as a means to identify
mathematical patterns in human cognition, represent them symbolically
and use such representations in computer emulations of human cognitive
activities and possibly verify properties of such activities; education, de-
vising and implementing learning models that exploit as well as address
human cognition.
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1 Introduction

The online Oxford Dictionary [43] defines cognition as “The mental action or
process of acquiring knowledge and understanding through thought, experience,
and the senses.” This is the definition of the mass or uncountable noun, which
denotes the abstract concept. There is also a countable meaning of the word cog-
nition, which the Oxford Dictionary defines as “A perception, sensation, idea, or
intuition resulting from the process of cognition.” The English word “cognition”
comes from the Latin verb “cognoscere”, which means “to get to know”. The
English mass noun accurately describes how the action expressed by the Latin
verb takes effect in the human mind in the form of a process. The English count
noun refers to all possible entities that are the result of such a process. The wide
range of these possible cognition outcomes, which may belong to the external
world, experienced through the human capabilities (e.g. perception, sensation),
but may also originate within the mind itself (e.g. idea, intuition), makes cogni-
tion an intrinsically interdisciplinary discipline of study.
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Although cognitive science is quite a recent discipline of study, nevertheless
the deep interest in understanding and explaining cognition goes back to the
origin of western philosophy, with Plato focussing on the ideas and Aristotle on
the experiences. Plato’s distinction between perfect ideas, or forms, and their
imperfect copies in the experienceable world evolved through the centuries and
found a turning point in Descartes’ mind-body dualism, which can be seen as
the origin of a new discipline, which had to wait for over two centuries to find
a name, psychology, and even more to have a recognition as a science. It is, in
fact, the double intent to study both mind and behaviour, that made it difficult
for psychology to acquire its own identity as a science. And when this started to
happen, around the end of the 19th century and the beginning of the 20th cen-
tury, psychology was split into two main schools, structuralism, whose object of
study was the human mind, observed through introspection, and functionalism,
which later evolved to behaviourism, whose object of study was the observed
human behaviour. This opposition went on for several decades until in the mid
20th century. The building of the first computers and the development of its the-
oretical bases in terms of logic and computability theories offered an alternative
way of looking at cognition, namely as a mental process similar to a computer
process. This is the computer analogy or computer metaphor, in which the hu-
man mind is compared to a computer with processing unit, input and output
“devices” and different kinds of memories for short-term and long-term storage.
This way of understanding the human mind went beyond scientific circles and,
with popular publications of eclectic scientists like Noam Chomsky and Douglas
R. Hofstadter, also captivated ordinary people. Hofstadter’s 800-page bestseller
[25] shows how cognition is related to mathematics, logic, computer science, bi-
ology and art, specifically Escher’s figurative art and Bach’s music. Interestingly,
Hofstadter manages to do this without even using the word ‘cognition’.

Furthermore, the relation between cognition and computer science actually
goes both ways. Not only can cognition be modelled in a computer-science fash-
ion but is also largely affected by the way computer science has spread through-
out the human living environment. The increasing complexity of this environ-
ment is no longer restricted to its natural components and the humans populat-
ing it, but is permeated by the ubiquitous presence of technology, which includes
physical systems, computational systems, virtual worlds and robots. Such an ex-
tended human environment has modified the way humans live, work, interact
with each other and learn.

Although the study of cognition split from philosophy almost two centuries
ago, there are philosophical foundations of cognition which are still actual nowa-
days. In Section 2 we start from such philosophical foundations and we introduce
a fundamental dilemma, which is also a first rule underlying human reasoning
and logic. Then we explore some foundational challenges relating human logic
and neuroscience and we illustrate future research applications. In Section 3,
we move from the notions of symbolic manipulation and recursion and their
use in mathematical proofs as the basis for modelling cognitions to an overview
of cognitive architectures and their application. Then we discuss how to enrich
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cognitive architectures with findings from research in human logic and enable
them to perform formal verification in order to tackle the most recent challenges
encountered in human-computer interaction (HCI). In Section 4 we show how
new learning environments, inspired by cognitive science, improve knowledge
development and produce cognitive skills in students fostering their transition
to adulthood and their involvement in lifelong learning. Finally, in Section 5 we
draw some conclusions on the interrelation among the considered perspectives.

2 Foundations: From Logic to Neuroscience

Cognition is both a theoretical and natural phenomenon. We humans have
evolved as the only species in the observable universe known to be capable of rea-
soning at its highest levels: we make abstractions, place thoughts as subjects of
other thoughts, erect in our own minds a higher-order theory of other minds, and
have evolved to communicate with the most expressive of human innovations:
natural language. As the result we are able, at least in principle, to constantly
improve our own mental instruments of thought, repair reasoning when it is
ill, and elevate levels of critical and innovative thinking to new, unprecedented
heights.

Yet the enormous complexity of the human brain and the mind gives rise
to a fundamental dilemma. We fail to be sufficiently cautious when the task at
hand is not to fool those who are the easiest ones to be fooled: ourselves. This
fact—that we should not take it for granted that we are proficient enough when
exercising our own critical faculties—is the First Rule of Reason. It is also the
first rule of logic in human mind and cognition to be expected to be able to
re-invent self-controlled thoughts and to implement long-lasting solutions.

What does the future of intelligent cognition look like in the world? Ab-
ject failures of this rule are evident in today’s world: we meet irrational and
inconsistent behavior that discounts the future; biases that have led to collective
erosion of reason such as in-group favouritism, out-group prejudice, deindividua-
tion and group narratives that only advance causes no different from self-serving
attitudes; overconfidence boosted by ignorance, and widespread resistance to
radical solutions when they clash with uncriticised appeals to the Precautionary
Principle. Such feats are trumped only by the abundance of Type I errors we
make when our apophenic neural relics kick in. Acts that harm others simply
because of the possession of different belief systems are just some examples of
dire consequences of uncriticised reasoning among many.

Various and well-documented logical, behavioural, economic, sociological,
philosophical, psychological and cognitive theories can be adduced to explain
extreme wrongdoings of human cognition and reason. These include game the-
ory, social dilemmas, incomplete evolutionary developments such as the work-in-
progress status of the evolution of our mammalian neuroendocrinological system,
inter-group conflict theories, dual-process theories of cognition, and the intrin-
sically confusing mechanisms that natural language has created, churning para-
doxes out of its system of propositional meaning and reference. Add the frailty
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and intractability of the consistency-maintenance of our belief systems and a
living time-nuke may be ticking around the corner.

Section 2.1 illustrates how these issues can be studied logically.

2.1 Logics for Cognition

What is needed are future-oriented logical and formal representations and mod-
els appropriate for the study of general intelligence and cognition. This has to be
done by resetting the scope of logic and reasoning and to have it incorporate the
full spectrum not only of the integrated human, machine and algorithmic deduc-
tive reasoning, but also the integrated inductive and abductive modes of inference
modelling intelligent interactive systems [14, 18, 60]. But here is where the future
looks promising: in the experimental world of cognitive neuroscience, one might
expect to find much new and interesting neural and behavioural correlates to
those expanded and interconnected logical modes and modalities.

The aims and challenges in the future studies of logic in cognition are thus
three-fold:

– Develop new forms of logic as the basis of cognitive and substrate-independent
studies of intelligent interaction. One needs an integrated logical, cognitive,
algorithmic and philosophical perspective to understand human reasoning,
(ir)rational action and generalized computational thought. New notational
innovations, such as diagrams and icons, have to occur in information pro-
duction and in rational acts of signification, independently of systems of
linguistic meaning and reference. Such innovations are likely to impact how
we perceive both the scope and the formal and mathematical structures of
logic in ways that apply to cognitive theories of reasoning and mind.

– Achieve new theoretical insights to human reasoning and decision-making.
Game-theoretical studies of behaviour and reasoning are common, but need
a sea change: human strategic reasoning is after all at bottom an abductive,
not a deductive, undertaking. Players deliberate on possible future histories
and take positions that according to standard common belief of rationality
approaches will never actually be reached as ‘the surprising facts’. Prompted
to reason to antedating actions under which such positions would be rendered
comprehensible, less surprising, or utterly facile and natural, the change in
view to abductive reasoning means to imaginatively look for where those
perturbations, such as trembles or quantal responses, could take place. The
conclusion is a conjecture about such perturbations [47].

– Study experimental validations of the above. Different forms of reasoning,
pragmatic and naturalized logics may be exposed through the advice of neu-
rocognitive studies. In particular, one could predict that various novel brain
measurement methods such as fNIRS (functional near-infrared spectroscopy)
produce data providing important insights into issues such as
• the performance of linear vs. non-linear (iconic, diagrammatic and vi-
sual) reasoning tasks;

• optimal logical representation tasks in different areas of pre-frontal cor-
tex;



Interdisciplinary Aspects of Cognition 5

• how inventions of new solutions come about (abduction and anticipa-
tion);

• verifications of cognitive economy of reasoning;

• how particular formal systems (such as negation-free conditional logic
[6]) could explain a host of cognitive biases without resorting to dual-
process theories.

Three observations can be made from these desiderata:

1. The advent of modern logic has made the study of reasoning and higher
executive tasks a remarkably platform-independent endeavor not limited to
traditional theories of rational behavior.

2. A key benefit of the application of logic in cognitive science is that we can
now study the non-deductive and imagistic sides of such reasoning better
than before [2, 3, 12, 28, 36, 46], including modes of reasoning encountered in
automatized decision-making systems, to reset the bounds of logic. This is
not to hasten to deny that all good reasoning is justified, at bottom, by
deductive patterns of inference.

3. New experimental analyses promise to reveal a cortical differentiation be-
tween the three major reasoning modes (deduction, induction and abduc-
tion). Measurements by fNIRS can reveal biological differences between these
three modalities, in which case differences in solving various reasoning tasks
have neural correlates in the prefrontal cortex. A hypothesis yet to be tested
is that frontal lobes are most active in deduction, occipital lobes in abduction,
and there is increased activation in parietal lobes in induction. Also, one can
study symbolic vs. iconic representations of logical tasks (such as graphical
logics) and observe to what extent the latter excites increased activities in
the right hemisphere and occipital lobes.

Future applications of research in logic and cognition are valuable not only in
cognitive sciences but also in general artificial intelligence. For example, compu-
tations in various important hierarchies are non-monotonic, and are commonly
used in logic, mathematics and their applications. Known examples are neural
networks and expert systems, where information recovered during computations
increases non-monotonically with time, as information previously obtained may
later be defeated and strategies of computation need reflect those changes. In
mathematical logic, such processes are known as “trial and error” processes.
Interestingly, they are related to abduction in ways not yet fully understood.

The future harbours new notational and empirical distinctions concerning
integrated human and artificial reasoning both at their theoretical and neuro-
physiological levels. This, if successful, will in turn result in improved methods
that apply such distinctions to creation of artificial models of cognition and
computational structures that reflect those distinction and could hence become
inventive, ampliative and generalisable when confronted with various critical
reasoning tasks independently of the particularities of the human, social, math-
ematical or machine contexts.
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Future insights may also include why conspiracy ‘theories’ have become so
widespread and what symptoms, factors and theoretical explanations, such as
hyper-rationalizability, they correlate with, namely exactly where and why cer-
tain executive areas in the prefrontal cortex assume abnormal functions. Theo-
retical activities and findings in logic and cognition are thus expected to have
translational and clinical impacts.

2.2 Brain-computer Interfaces

A brain-omputer interfaces (BCI) is a direct communication pathway between
an enhanced or wired brain and an external device. Since the early prototypes in
the 70’s [57], the field of BCI has witnessed a rapid growth, and a large number
of neuroimaging technologies have been employed, such as Electroencephalog-
raphy (EEG) [5], Magnetoencephalography (MEG) [58], Electrocorticography
(ECoG) [7], functional magnetic resonance imaging (fMRI) [34], near-infrared
spectroscopy (NIRS) [56] as well as combinations thereof [16, 15]. Early BCI sys-
tems were based on operand conditioning [4], where the subject had to adapt to
the BCI in order to give meaningful commands. However, these types of systems
required weeks of adaptation on the subject side. More recently, a machine learn-
ing approach has been adopted by the community in order to reduce setup times
of real-time feedback sessions [5, 17]. While BCIs have originally been proposed
as a communication tool for patients with disabilities, such as paraplegia or
locked-in syndrome [4], a whole range of other applications have been proposed,
which use BCI decoding techniques such as gaming, biometrics [13], workload
detection and driver fatigue [21].

The field of BCIs can play an important role for further advances in cognitive
sciences, since a number of technologies that have been developed are applicable
beyond this field of research. A recent BCI study that employed multi-modal
neuroimaging for intention decoding found that EEG and NIRS can lead to
higher decoding accuracy when combined and more importantly, that their in-
formation is complementary [16]. In another study, a machine learning approach
of mental state decoding was applied to the Libet experiment [51]. Generally,
BCI techniques are tools for decoding mental states and intentions in real time.
Clearly, these mental states underlie higher order cognitive processes, which can
be disseminated further by careful experimental design.

3 Computation: From Mathematics to Computer Science

Hofstadter’s 800-page bestseller [25] aims to show how self-reference, which es-
sentially corresponds to the mathematical notion of recursion, is the basis of
self-awareness. Hofstadter considers the diagonal argument used by Kurt Gödel
to prove his two incompleteness theorems: the use of a property that refer to
itself to prove that (1) there is no axiomatic system capable to prove all prop-
erties of the arithmetic and (2) no consistent axiomatic system which includes
Peano arithmetic can prove its own consistency.
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Gödel’s results may be seen as an evidence that there is no objective reality
and that there are questions that cannot have an answer. Hofstadter writes in the
preface to the 20th-anniversary edition of his book: ‘Something very strange thus
emerges from the Gödelian loop: the revelation of the causal power of meaning
in a rule-bound but meaning-free universe. [. . . ] When and only when such a
loop arises in a brain or in any other substrate, is a person — a unique new
“I” — brought into being.’ This means that symbolic computation, especially
through recursion, potentially allows meaning to emerge from the manipulation
of meaningless symbols, up to the complexity of human reasoning. The fact
that recursion is the fundamental mathematical tool in mechanising reasoning
is not a surprise for a computer scientist. After all, programming languages
used in artificial intelligence, either Lisp-like functional languages or Prolog-like
declarative languages, heavily exploit recursion.

3.1 A Philosphical Digression

It is interesting to note that Gödel’s results inspired, on the one hand, Penrose’s
claim that human consciousness is non-algorithmic, and thus is not capable of
being modeled by a conventional Turing machine, which includes a digital com-
puter [45] and, on the other hand, Hofstadter’s identification of what emerges
from Gödel’s diagonalisation, i.e. from an algorithmic process, as self-awareness
[25, 26]. If we put the two things together, then it may be true that, as Penrose
believes, human consciousness cannot be modelled algoritmically, but, following
Hofstadter, self-awareness, i.e. the recognition of that consciousness and its lim-
itations, emerges from a recursive algorithm. Although, this may appear as a
paradox, in reality, Gödel’s proving procedure uses self-reference, i.e. a recursive
algorithm to understand the limitations of highly expressive formal systems. And
this “understanding process” is nothing else than cognition.

We can then conclude this philosophical digression by stating that symbolic
manipulation, i.e. algorithms, may potentially be used to model human cog-
nition. However, a first important question is whether this potential power of
symbolic manipulation together with the high performance of today’s comput-
ers can effectively be used to emulate human cognition. Then, if this is possible,
a second question is what would be the purpose and the real-life usage of a
computational emulation of human cognition. We will look for answers to these
questions in Sections 3.2–3.3.

3.2 Cognitive Architectures

A cognitive architecture has to be intended as a comprehensive model of the
human mind, with a computational power that supports the in silico replica-
tion of experiments carried out in cognitive psychology as well as some form of
prediction and analysis. A cognitive architecture is based on and implements a
theory of cognition, which conceptualises the structure of mind in terms of its
processing and storage components and the way such components work together
to produce human thinking and behaviour [1]. Cognitive architectures originated
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from the research carried out in artificial intelligence during the 1950s with the
aim of creating computer programs that could solve a wide range of problems
across several domains and adapt themselves to new contexts and new situa-
tions and, finally, in line with the Hofstadter’s Gödelian loop, to reason about
themselves.

A number of cognitive architectures have been proposed since the 1970s [50,
33], following three approaches: symbolic (or cognitivist), such as Soar, which are
based on a set of predefined general rules to manipulate symbols, connectionist
(or emergent), such as DAC, which count on emergent properties of connected
processing components (e.g. nodes of a neural network), and hybrid, such as
CLARION, which combine the two previous approaches. However, there is no
clear agreement on the categorisation of specific architecture in this taxonomy.
For example, ACT-R [1] is often classified as symbolic but, in fact, explicitly
self-identifies as hybrid.

Kotseruba and Tsotsos [33] note that most cognitive architectures have been
developed for research purposes rather than for real-life usage. Nevertheless, they
consider several major categories of application:

– Psychological experiments is the largest category comprising more than one
third of the architectures and supports the replication of a large number of
psychophysiological, fMRI and EEG experiments with the aim of demon-
strating the capability of adequately modelling and possibly explaining psy-
chological and physiological phenomena.

– Robotics includes nearly one quarter of the architectures and mostly involves
relatively simple forms of behaviour, such as navigation, obstacle avoidance
and object search and manipulation, but, in some instances, incorporates
multiple skill to perform a complex behaviours.

– Human performance modelling (HPM) to perform a quantitative analysis of
the human behaviour in carrying out specific tasks.

– Human-robot interaction (HRI) and human-computer interaction (HCI) to
analyse the interaction process in which the human is assisted by a robot or
machine.

– Natural language processing (NLP) to model various processing aspect from
low-level auditory perception to high-level conversation, though the latter
only in limited domains.

– Categorisation and Clustering comprises mostly connectionist architectures
and aims at processing noisy sensory data.

– Computer vision comprises most of connectionist architectures and aim at
solving computer vision problems.

– Games and puzzles to demonstrate reasoning and learning ability.
– Virtual agents to model human behaviour in a domain in which experiments

might have lethal consequence such as military and counter-terrorism.

3.3 Human-computer Interaction and Cognitive Errors

Human-computer interaction is the study, planning, and design of the interac-
tion between humans (users) and computers. A system that involves such an
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interaction is called interactive system. Interactive systems may appear to work
correctly and safely when analysed in isolation from the human environment in
which they are supposed to work. In fact, the same cognitive skills that enable
humans to perform complex tasks may also become the source of critical errors
in the interaction with systems and devices designed as supports for such tasks
[27].

These kinds of errors are called cognitive errors. Normally, cognitive errors
occur when a mental process aiming at optimising the execution of a task causes
instead the failure of the task itself. The existence of a cognitive cause in human
errors started to be understood already at the beginning of the 20th century,
when Mach stated that “knowledge and error flow from the same mental sources,
only success can tell the one from the other” [37]. It is, in fact, at the beginning of
the 20th century, when human errors in interacting with machines have started
to be studied. However, we had to wait until the 1990’s to clearly understand
that “correct performance and systematic errors are two sides of the same coin”
[48].

The systematic analysis of human errors in interactive systems has its roots
in Human Reliability Assessment (HRA) techniques [31], which mostly emerged
in the 1980’s. However, these first attempts in the safety assessment of interac-
tive systems were typically based on ad hoc techniques [35], with no efforts to
incorporate a representation of human cognitive processes within the model of
the interaction. With the increasing use of computers in safety-critical domains,
such as avionics, aerospace, transportation and medicine, during the second half
of the 20th century, the increased complexity of overall systems consisting of
both computer and human components made it difficult to predict the range of
possible human errors that could be observed (phenotype errors) and even more
difficult to relate them to their cognitive causes (genotype errors).

3.4 Using Formal Methods in Human-computer Interaction

In the critical contexts considered in Section 3.3 it is thus essential to verify the
desired properties of an interactive system using a model that not only includes
a user-centered description of the task, but also incorporates a representation
of human cognitive processes within the task execution. However, although cog-
nitive architectures can mimic many aspects of human cognitive behaviour and
learning, including some aspects of human interaction with machines, they could
never be really incorporated in the system and software verification process.

In contrast, the important role played by formal methods in the modelling
and verification of computer systems in general, and of safety and security sys-
tems in particular, cannot be questioned. In fact, in safety-critical domains, it
is explicitly dictated by standards that verification of critical modules must be
formal. However, the use of formal methods in HCI has often been restricted to
specific domains or applications, with the unfounded hope to be able to identify
most human errors which may occur.

Nonetheless, the way the validity of both functional and non-functional prop-
erties is affected by the user behaviour is quite intricate. It may seem obvious
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for functional properties that an interactive system can deploy its functionalities
only if it is highly usable. However, usability may actually be in conflict with
functional correctness, especially in applications developed for learning or enter-
tainment purpose. More in general, high usability may be in conflict with user
experience, whereby the user expects some challenges in order to test personal
skills and knowledge, enjoy the interaction and avoid boredom.

Usability is also strictly related to critical non-functional properties such as
safety [27] and security [11]. Moreover, safety and security are two critical context
in which human error may lead to catastrophic consequences, in term of loss of
properties, injuries and even loss of life.

The relationship between usability and critical non-functional properties is
actually two ways. On one side improving usability increases safety and/or secu-
rity. On the other side introducing mechanisms to increase safety and/or security
may reduce usability and, as a result, may lead to an unexpected global decrease
in safety [27] and/or security [11]. Although in an ideal world human errors may
be avoided through a rigorous user-centred design, in the real world humans
have to frequently deal with inappropriate operating environments [9, 27], con-
straining social contexts [11, 27] and cultural differences [23], thus building up
experiences that may then produce expectation failures and result adverse in
the interaction with “correctly” designed systems [9]. Moreover, the individual
analysis of different aspects of cognition, such as specific cognitive errors [30],
pattern of behaviours [9], specific cognitive processes such as automatism and
attention [8, 53] and social interaction [11] fails to capture failures that may
emerge from the combination of these aspects [27]. Furthermore, the context
in which the interaction occurs and its effect on the human behaviour are often
unpredictable; thus they cannot be modelled a priori. This complex situation de-
termines a number of important research challenges in developing a methodology
for the modelling and analysis of interactive systems:

1. non-functional properties that are in conflict with each other or with func-
tional properties must be “cognitively weighted”;

2. the correctness of a system depends also on the effect on the human of
previous environments or context, that is, on learning;

3. system failures depend on multiple aspects of cognition, which need to be
dealt with during analysis in a holistic way;

4. the intrinsic unpredictability of human behaviour requires the validation of
any a priori model on real data;

5. the use of formal methods for system modelling and analysis requires high
expertise in mathematics and logic, which is not common among typical
users, such as interaction design and usability experts as well as psychologists
and other social scientists.

We believe that these challenges can only be tackled through an interdisciplinary
approach in which computer scientists cooperate with logicians, neuroscientists,
cognitive scientists and social scientists. Cognitive architectures are already the
result of interdisciplinary efforts, but additional efforts are needed to make them
usable not just for emulating aspects of the human behaviour but also to prove
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properties of the human behaviour and its interaction with machines. That is,
to reason about the same behaviour they model or, in the spirit of Hofstadter’s
“golden braid”, to reason about themselves.

In this respect, the new forms of logic discussed in Section 2 would provide
expressive, appropriate languages to describe properties that, on the one hand,
have visual characteristic fostering human intuition and, on the other hand, are
also apt to the symbolic manipulation needed for formal analysis. We claim that
the realisation of cognitive architectures able to carry out formal analysis is a
promising way to tackle the five challenges above [10].

4 Education: Cognitive Learning

The field of cognitive science has greatly enhanced our understanding of many
areas of human thought processing including but not limited to memory, intel-
ligence, brain research, problem solving, expert-novice continuum, information
processing and pattern recognition. This in turn has greatly affected education
and its practices. Cognitive learning (i.e., cognitive education) could be defined
as an educational approach that has its basis in cognitive science research and
is focused on the teaching and learning of the cognitive processes and skills con-
nected to reasoning [22, 54]. Thus, the subsequent instruction engages students
in learning and helps them to make connections between new and older concepts
in order to make learning more meaningful.

In the previous sections we have already very much emphasised the multidis-
ciplinary nature of cognitive science and its subdisciplines. The field of cognitive
learning is no exception. It is multidisciplinary and draws from the findings in a
number of fields (e.g., human computer interaction, cognitive linguistics, neuro-
science and cognitive psychology) in order to design learning environments that
produce the most effective learning possible so that learning occurs not only
more effectively but in a deeper fashion. These cognitive processes or skills are
mechanisms used by everyone to navigate their everyday lives. Which means
that these redesigned learning environments will allow for not only increases in
understanding in specific fields but also allow for the production of lifelong learn-
ers and thinkers in all areas of life. While a traditional learning environment is
teacher directed and centered on knowledge transmission, memorization, based
in facts and usually competitive in nature, a cognitive approach is student cen-
tered and focused on knowledge construction, development of reasoning skills,
collaborative and practical in nature.

4.1 Learning Environments for Multiple Disciplines

The findings from these multiple fields have led to numerous new, effective learn-
ing environments. Drawing from HCI, cognitive tutors have been shown to be
highly effective in mathematical classes [49]. Cognitive tutors make use of find-
ings drawn from interactions that include just in time scaffolding to assist stu-
dents as they construct their knowledge of arithmetic. Other approaches have
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been developed that have been successfully used in multiple disciplines to teach
reasoning skills such as problem-based learning [59] and project-based learning
[32]. Project-based learning has been shown to be highly effective and makes
use of student-led projects. These projects are tasks that are highly challenging,
which allows students to engage in activities such as problem solving and deci-
sion making while allowing students to work independently for extended periods
of time [55]. Tan and Chapman [55] found that this learning method encouraged
students to learn to work collaboratively while gaining cognitive skills in problem
solving.

4.2 Modelling in Science — A Cognitive Learning Environment

One learning environment that has been utilised in the field of science education
and has its base in cognitive science is the use of models in science classrooms
[24, 44]. These methods make use of the work done by cognitive psychologists
to discover the cognitive activities and tools that practicing scientists make use
of on a daily basis. Giere [20] postulated that the tools used by scientists to
make sense of the world cannot be much different from those used by people in
everyday life. Nersessian [42] studied historical and contemporary scientists to
determine that the construction and use of science models was at the center of
scientific thought.

Mental models are constructions in each individual brain which they can
encode into multiple representations to share with others thus producing what
Hestenes calls a conceptual model [24]. These conceptual models consist of mul-
tiple reprehensions that can take many forms such as that of diagrams, algebraic
equations or graphical depictions of reality. The conceptual models can then be-
come shared within a group of individuals to make predictions and refinements
in thinking. The use of mental models for meaning making is also quite well
known in cognitive linguistics [19]. Modelling in science is basically model-based
reasoning. It is the production of models from empirical data and the use of
these models to produce predictions whose failure leads to refinements of the
original model. Thus, it is an iterative cycle [52]. It has been shown to be highly
effective at producing conceptual gains in physics [29] and biology [40] as well
as gains in student understanding of models [61].

The problem solving of students has been shown to become more expert
like and allow students the ability to undertake productive error analysis [38].
In addition, in some fields it is difficult to produce empirical data within the
context of classrooms simply because there is not enough time. In these cases,
computer modeling has been used to produce simulations that help students
‘collect’ data on which to base their initial models [41, 39]. These simulations
then allow for further analysis of the strategies used by students by cognitive
psychologists. Finally, modelling in science has been shown to increase student
fascination with science over that of traditionally taught students [41].

In conclusion, cognitive learning in the educational field has produced gains
in knowledge development as well as producing students with the cognitive skills
to become effective reasoning adults no matter what path they take in life.
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5 Conclusion

We have considered cognitive research and its challenges from three perspectives:
foundations, computation and education. Within each of these perspectives. we
have identified important relations and complementarity among different disci-
plines.

Foundations of cognition can be in terms of either logic description of high-
level reasoning modalities or low-level neurological signals. We have proposed
the use of new experimental analyses to map reasoning modes to areas of the
prefrontal cortex. From a computational perspective, cognitive architectures can
be enriched with formal analysis mechanisms to carry out the verification of the
overall interactive system. Furthermore, as a transversal relation across foun-
dations and computation, symbolic and visual aspects of new logics for human
cognition may be exploited to enable formal analysis and facilitate user under-
standing, respectively.

Finally education is a perspective in which research in cognition can be ap-
plied to any discipline by defining the appropriate learning environment.

Acknowledgments. The authors would like to thank the four anonymous re-
viewers whose comments and suggestions greatly contributed to improve the
paper.
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