Behaviour and Reasoning Description Language
(BRDL)

Antonio Cerone

Department of Computer Science, Nazarbayev University, Nur-Sultan, Kazakhstan
antonio.cerone@nu.edu.kz
https://cs-sst.github.io/faculty/cerone

Abstract. In this paper we present a basic language for describing hu-
man behaviour and reasoning and present the cognitive architecture
underlying the semantics of the language. The language is illustrated
through a number of examples showing its ability to model human rea-
soning, problem solving, deliberate behaviour and automatic behaviour.
We expect that the simple notation and its intuitive semantics may ad-
dress the needs of practitioners from non matematical backgrounds, in
particular psychologists, linguists and other social scientists. The lan-
guage usage is twofold, aiming at the formal modelling and analysis
of interactive systems and the comparison and validation of alternative
models of memory and cognition.

Keywords: Human Reasoning; Problem Solving; Human Behavior; For-
mal Methods; Cognitive Science.

1 Introduction

Research in modelling human cognition has resulted in the development of a
large number of cognitive architectures over the last decades [9,17]. However,
we are still very far from having a unified approach to modelling cognition. In
fact, cognitive architectures are based on three different modelling approaches,
symbolic (or cognitivist), such as Soar [10], which are based on a set of predefined
general rules to manipulate symbols, connectionist (or emergent), such as DAC
[19], which count on emergent properties of connected processing components
(e.g. nodes of a neural network), and hybrid, such as CLARION [18], which com-
bine the two previous approaches. Moreover, there is no clear agreement on the
categorisation of specific architecture in this taxonomy. For example, ACT-R
[1] is often classified as symbolic but, in fact, explicitly self-identifies as hybrid.
Furthermore, most architectures have been developped for research purpose and
are fairly specialised in one or more of the following areas: psychological experi-
ments, cognitive robotics, human performance modelling, human-robot interac-
tion, human-computer interaction, natural language processing, categorisation
and clustering, computer vision games and puzzles, and virtual agents [9].

The complexity of these cognitive architectures makes it difficult to fully
understand their semantics and requires high expertise in programming them.

2 Antonio Cerone

Moreover, although cognitive architectures can mimic many aspects of human
behaviour and learning, they never really managed to be easily incorporated in
the system and software verification process.

In this paper we propose a notation, the Behaviour and Reasoning Descrip-
tion Language (BRDL), for describing human behaviour and reasoning. The
semantics of the language is based on a basic model of human memory and
memory processes and is adaptable to different cognitive theories. This allows
us, on the one hand, to keep the syntax of the language to a minimum, thus mak-
ing it easy to learn and understand and, on the other hand, to use alternative
semantic variations to compare alternative theories of memory and cognition.
The latter can be easily achieved by replacing implementation modules and, on
a finer grain, varying the values of a number of semantic parameters.

BRDL originated from and extends the Human Behaviour Description Lan-
guage (HBDL) introduced in our previous work [2,3]. HBDL focuses on the
modelling of automatic and deliberate behaviour. However, it requires reason-
ing and problem solving aspects to be modelled explicitly in a procedural way,
whereby the reasoning process and the problem solution are explicitly described
with the language. BRDL, instead, is equipped with the linguistic constructs to
specify reasoning goals (e.g. questions), inference rules and unsolved problems.
The cognitive engine implementing the language then emulates the reasoning
and problem solving processes. In our previous work [2, 3], HBDL has been im-
plemented using the Maude rewrite language and system [11,16]. In our recent
work [4] we started implementing BRDL using the real-time extension of Maude
[15]. The use of formal methods, specifically Maude, to implement the languages
allows us to combine human components and system components and perform
formal verification. This is carried out by exploiting the model checking capa-
bility of Maude and Real-time Maude.

This paper aims at addressing a broad community of researchers form dif-
ferent backgrounds but all interested in cognition. For this reason, rather than
listing formal definitions, we start from small, practical examples and then gen-
eralise them as semi-formal definitions or algorithmic descriptions in which we
avoid jargon and keep the formal notation to a minimum. Formality is intro-
duced, usually in term of elementary set theory, only when is needed to avoid
ambiguity, but is avoided whenever a textual explanation is sufficient.

Section 2 introduces the underlying memory and cognitive model, inspired
by the information processing approach. Section 3 describes the notation used
for knowledge representation and presents the algorithm used for knowledge re-
trieval. Section 4 presents how to model deliberate behaviour in term of reason-
ing, interaction and problem solving. In particular, it illustrates how inference
rule are used in reasoning and interaction and how knowledge drives the de-
composition of the problem goal into subgoals. Section 5 presents how to model
automatic behaviour and how this evolves from deliberate behaviour through
skill acquisition. Finally, Section 6 concludes the paper and discusses the ongo-
ing BRDL implementation as well as future work.

Behaviour and Reasoning Description Language (BRDL) 3

Observable Environment

A

action sensory info
Y
Long-term Memory
(LTM) Implicit Sensory
Episodic Attention 4 Memory
events Procedural
Skill human skills perception
Acquzsztsz . <
| infor d »| selected
Sematic perc = act A| Selection info
fact infoo Y
s Short-term Memory
goal : info . (STM)
d Eaxplicit . .
perc = act Attention /mfol Uinfor
infos Closured
yy
L goal(info)

Fig. 1. Human Memory Architecture underlying BRDL semantics

2 Human Memory Architecture

Following the information processing approach normally used in cognitive psy-
chology, we model human cognitive processes as processing activities that make
use of input-output channels, to interact with the external environment, and
three main kinds of memory, to store information. Input and output occur
through the senses and the motor system. We give a general representation of
input channels in term of perceptions, possibly abstracting away from the spe-
cific senses involved in the perception. We represent output channels in term of
actions. Actions are performed in response to perceptions.

Figure 1 describes the human memory architecture we will use to provide
the semantics of BRDL. The notational details of the figure will be explained in
Sections 4 and 5. The memory consists of the following components:

sensory memory
where information perceived through the senses persists for a very short time
[13];

short-term memory (STM)
which has a limited capacity and where the information that is needed for
processing activities is temporary stored with rapid access and rapid decay
[6,7,13];

long-term memory (LTM) which has a virtually unlimited capacity and where
information is organised in structured ways, with slow access but little or no
decay [5, 8].

4 Antonio Cerone

We must note that the term STM indicates a mere, short-term storage of infor-
mation, whereas the term working memory is used for a short-term buffer that
also supports processing and manipulation of information [6,7]. Although some
neuropsychological studies show evidences supporting this distinction, which cor-
respond to two different neural subsystems within the prefrontal cortex [7], in our
work we do not associate processing with memory directly. In fact, we consider
the short-term storage aspects as a whole and express them in the BRDL syntax,
while all processing aspects are delegated to the semantics of the language.

A usual practice to keep information in memory is rehearsal. In particular,
maintenance rehearsal allows us to extend the time during which information
is kept in STM, whereas elaborative rehearsal allows us to transfer information
from STM to LTM.

2.1 Short-term Memory (STM) Model

The limited capacity of the STM has been measured using experiments in which
the subjects had to recall items presented in sequence. By presenting sequences
of digits, Miller [12] found that the average person can remember 7 + 2 digits.
However, when digits are grouped in chunks, as it happens when we memorise
phone numbers, it is actually possible to remember larger numbers of digits.
Therefore, Miller’s 7 & 2 rule applies to chunks of information and the ability to
form chunks can increase people’s STM actual capacity.

We assume that the STM may contain pieces of information, which may
describe cognitive information, possibly retrieved from the LTM, goals, recent
perceptions or planned actions. Therefore we can denote the set of pieces of
information that may be in STM as

O=IUSUAUT,

where IT is a set of perceptions, X' is a set of actions, A is a set of pieces of
cognitive information and I is a set of goals. Moreover, each piece of information
is associated with a life time, which is initialised as the STM decay time when
the information is first stored in the STM and then decremented as time passes.
A piece of information disappears from the STM once its life time has decreased
to 0.

The limited capacity of short-term memory requires the presence of a mech-
anism to empty it when the stored information is no longer needed. When we
produce a chunk, the information concerning the chunk components is removed
from the STM. For example, when we chunk digits, only the representation of
the chunk stays in the STM, while the component digits are removed and can no
longer be directly remembered as separate digits. Generally, every time a task
is completed, there may be a subconscious removal of information from STM,
a process called closure: the information used to complete the task is likely to
be removed from the STM, since it is no longer needed. Therefore, when closure
occurs, a piece of information may disappear from the STM even before its life
time has decrease to 0. Furthermore, a piece of information may disappear from

Behaviour and Reasoning Description Language (BRDL) 5

the STM also when the STM has reached its maximum capacity and it is needed
to make space for the storage of needed information. Conversely, maintenance
rehearsal resets the life time to the value of the decay time.

2.2 Long-term Memory (LTM) Model
Long term memory is divided into two types

declarative or explicit memory
refers to our knowledge of the world (“knowing what”) and consists of the
events and facts that can be consciously recalled:

— our experiences and specific events in time stored in a serial form (episodic
memory);

— structured record of facts, meanings, concepts and knowledge about the
external world, which we have acquired and organised through associa-
tion and abstraction (semantic memory).

procedural or implicit memory
refers to our skills (“knowing how”) and consists of rules and procedures that
we unconsciously use to carry out tasks, particularly at the motor level.

Emotions and specific contexts and environments are factors that affect the stor-
age of experiences and events in episodic memory. Information can be transferred
from episodic to semantic memory by making abstractions and building associ-
ations, whereas elaborative rehearsal facilitates the transfer of information from
STM to semantic memory in an organised form.

Note that also declarative memory can be used to carry out tasks, but in a
very inefficient way, which requires a large mental effort in using the STM (high
cognitive load) and a consequent high energy consumption. In fact, declarative
memory is heavily used while learning new skills. For example, while we are
learning to drive, ride a bike, play a musical instrument or even when we are
learning to do apparently trivial things, such as tying a shoelace, we consciously
retrieve a large number of facts from the semantic memory and store a lot of
information in the STM. Skill acquisition typically occurs through repetition
and practice and consists in the creation in the procedural memory of rules
and procedures (proceduralisation), which can be then unconsciously used in an
automatic way with limited involvement of declarative memory and STM.

2.3 Memory Processes and Cognitive Control

We have mentioned in Section 2.2 that skill acquisition results in the creation in
procedural memory of the appropriate rules to automatically perform the task,
thus reducing the accesses to declarative memory and the use of STM, and, as
a result, optimising the task performance.

Perceptions are briefly stored in the sensory memory and only relevant per-
ceptions are transferred, possibly after some kind of processing, to the STM
using attention, a selective processing activity that aims to focus on one aspect

6 Antonio Cerone

of the environment while ignoring others. Ezxplicit attention is associated with
our goal in performing a task. It focusses on goal-relevant stimuli in the environ-
ment. Implicit attention is grabbed by sudden stimuli that are associated with
the current mental state or carry emotional significance.

Inspired by Norman and Shallice [14], we consider two levels of cognitive
control:

automatic control
fast processing activity that requires only implicit attention and is carried
out outside awareness with no conscious effort implicitly, using rules and
procedures stored in the procedural memorys;

deliberate control
processing activity triggered and focussed by explicit attention and carried
out under the intentional control of the individual, who makes explicit use
of facts and experiences stored in the declarative memory and is aware and
conscious of the effort required in doing so.

For example, automatic control is essential in properly driving a car and, in
such a context, it develops throughout a learning process based on deliberate
control. During the learning process the driver has to make a conscious effort
that requires explicit attention to use gear, indicators, etc. in the right way
(deliberate control). In fact, the driver would not be able to carry out such an
effort while talking or listening to the radio. Once automaticity in driving is
acquired, the driver is no longer aware of low-level details and resort to implicit
attention to perform them (automatic control).

One of the uses of BRDL is the analysis and comparison of different archi-
tectural models of human memory and cognitions. In this sense the semantics of
the language depends on the values assigned to a number of parameters, such
as:

STM mazimum capacity the maximum number of pieces of information (pos-
sibly chuncks) that can be stored in STM;

STM decay time the maximum time that information may persist in STM in
absence of maintenance rehearsal;

lower closure threshold the minimum STM load to enable closure;

upper closure threshold the minimum STM load to force closure;

LTM retrieval maximum time the maximum time that can be used to re-
trieve information from LTM before a retrieval failure occurs.

3 Knowledge Representation

Semantic networks are a simple, effective way to represent and structure infor-
mation in semantic memory. We call category any item that is the object of our
knowledge. An association between two categories is described by an arrow from
the more specific to the more generic category. Additionally, a category may
have attributes, which may also be categories, each attribute with a type char-
acterising its relationship with the category. The specific category inherits all

Behaviour and Reasoning Description Language (BRDL) 7

Animals ANIMAL bark four_legs SHEEP
doe;s/ doesl ‘\ﬁ Tdoes/(m Tworks
breath move DOG is-a SHEEPDOG

TisaNiS Tis,a

bark <4280t pAgpNgT 458 HOUND tail COLLIE

TiSNfS Tis,a

SNOOPY — 52 BEAGLE track LASSIE

Dogs

(knowledge domain)

Y Y

Cartoons Films

Fig. 2. Example of Semantic Network (adapted from Dix [8]).

attributes of the generic category unless the attribute is redefined at the specific
category level.

For example, Figure 2 shows a semantic network for the knowledge domain
dogs. Note that in Figure 2 we have used words entirely in upper-case letters
for categories and capitalised words for knowledge domains for readability pur-
poses. However, this convention is not used in BRDL. Category dog is associated
with the more generic category animal (is_a(animal)) at a higher level and has
the following attributes with obvious meaning: does(bark), has(four-legs) and
has(tail). Category dog is made more specific by adding association is_a(dog)
to lower-level categories describing dog groups, such as sheepdog and hound,
and at even lower-level categories describing dog breeds, such as collie, beagle
and basenji. Furthermore, category basenji has attribute doesnt(bark), which
redefines the does(bark) attribute of dog. In fact, a basenji is an exceptional dog
breed that does not bark. Note that bark is duplicated only for better readabil-
ity. In fact, a single bark attribute should occur in both the does and doesnt
association.

A fact in semantic memory is modelled in BRDL as

domain : category | delay | type(attribute)

where delay is the mental processing time needed to retrieve the type(attribute)
association of the category within the given knowledge domain. With reference
to Figure 2, obvious examples of facts are:

1. animals : animal | LN | does(breath),

8 Antonio Cerone

animals : animal | LN | does(move),
dogs : dog | s, | is.a(animal),

dogs : dog | iy | does(bark),

dogs : hound | LN | is-a(dog),

dogs : basenji | s, | is_a(hound),
dogs : hound | A, | does(track),

© NS e W

dogs : basenji | s, | doesnt(bark) .

There are some relations between attribute types. For instance, doesnt is the
negation of does and isnt_a is the negation of is_a.

3.1 Knowledge Retrieval

Knowledge retrieval occurs deliberately, driven by specific goals we have in mind.
Our working memory is the STM, so our current goals are stored in STM. Within
a given knowledge domain, we model the goal of retrieving the attributes of a
given type that are associated with a given category as

goal(domain, type_what?(category)).

The presence of such a goal in STM triggers the retrieval of one specific attribute
so that fact type(category, attribute) or its negation is added to the STM, unless
it is already there, while the goal is removed from the STM. If the fact is already
in STM, then another attribute will be retrieved. If there are more attributes
associated with the given category that are not in STM yet, then the one with
the least mental processing time is retrieved. One of the memory parameters in-
troduced in Section 2.3, the LTM retrieval mazimum time, defines the maximum
time for such a search, after which the dontknow(domain, type_what?(category))
fact replaces the goal in STM.
Suppose that we want to find out what an animal does. Our goal is

goal(animals, does_what?(animal)).

This goal immediately matches facts 1 and 2 in LTM, as in the example in
Section 3. Thus the goal is replaced in STM by does(animal, breath) after time
dy, if dy < da, or by does(animal, move) after time da, if do < dy. If dy = da,
then the choice is nondeterministic.

Other possible goals are:

goal(domain, type_which?(attribute)) for retrieving the category with which
the given typed attribute is associated;

goal(domain, type? (category, attribute)) for answering the question on whether
the category is associated with the typed attribute and, if the answer is
positive, adding fact type(category, attribute) to the STM, otherwise adding
its negation to the STM.

Behaviour and Reasoning Description Language (BRDL) 9

We want now to find out whether a basenji breaths. Our goal is
goal(dogs, does? (basenji, breath)).

Since none of the attributes of basenji matches our question we need to climb
the hierarchy of categories described in Section 3 and go through hound (fact 6)
and dog (fact 5) until we reach animal (fact 3) and find out that our question
matches fact 1. The time for such a retrieval is the sum of the retrieval times
of all is_a facts for all categories we have gone through (dg, ds and d3) plus the
sum of all does facts associated with each of these categories that do not match
the goal (d7) plus the fact that matches the goal (d1): dg + d5 + d3 + d7 + d1,
which is obviously greater than time d; needed to find out whether an animal
breaths. This is consistent with Collins and Quillian’s experiments on retrieval
time from semantic memory [5].
Finally, we want to find out whether a basenji barks. Our goal is

goal(dogs, does?(basenji, bark)).

This goal immediately matches fact 8 in LTM, as in the example in Section 3.
Thus the goal is replaced in STM by doesnt(basenjil, bark) after time d.

In general, given goal g(c) = goal(dom, type_what?(c)) and an LTM retrieval
maximum time d;,q., the fact f(g,c) that replaces the goal in STM after time
t(g,c) is as follows:

f(g;¢) = type(c, a) with t(g,c) = d
if dom : ¢ | N | type(a) is in LTM;

f(g,¢) = f(g,¢) with t(g,c) = s(type,c) + d + t(g,c)
if there is no attribute a such that dom : ¢ | LN | type(a) is in LTM
and t(g,¢) < dmas and there is a knowledge domain dom’ such that

dom/ : ¢ | LN | is_a(c’) is in LTM;

f(g,¢) = type(c,a) with t(g,c) = dmaa
if there is no fact in LTM that can be retrieved within time d,,q2

where type is the negation of type and s(type, c) is the sum of the retrieval times
of all facts in LTM with the given category c and type type.

Similar algorithms can be given for goals goal(dom,type_ which?(a)) and
goal(dom, type?(c, a)).

We conclude this section with a clarification about the role of the knowledge
domain. Although retrieval goes across knowledge domains, it is the existence of
a specific knowledge domain to enable it. For example, with reference to Figure 2,
knowledge domain ‘Dogs’ allows us to retrieve information on ‘SNOOPY’ as a
dog, but not as a cartoon character. That is, we can find out that SNOOPY
tracks but not that SNOOPY thinks. This last piece of information, instead,
could be retrieved within the ’Cartoon’ knowledge domain.

10 Antonio Cerone

4 Deliberate Basic Activities

Facts in semantic memory not only describe the static knowledge of the world
but also the dynamic knowledge on how to deliberately manipulate our own
internal knowledge and understand the external world (reasoning and problem
solving) and how to use knowledge to perceive and manipulate the external world
(interaction and problem solving).

The general structure of a deliberate basic activity is

goal : infoy 1 perc =L act J infoo

where

— goal € I' is a goal, which may be structured in different ways;

— perc € II is a human perception;

— info; € O\I is the information retrieved and removed from the STM;

— infos C O is the information stored in the STM;

— act € X is a human action;

— d is the mental processing time (up to the moment action act starts, but not
including act duration).

The upward arrow denotes that info; is removed from the STM and the down-
ward arrow denotes that infos is added to the STM. In case info; must not be
removed from the STM we can use the following derived notation:

goal : infoy | perc =L act J infos

where the ‘|’ instead of ‘4’ denotes that info; is not removed from the STM.

This derived notation is equivalent to goal : info; 1 perc =L act J info1 Uinfos.
Special cases are:

goal : infoy T:d> act | info; and goal : infoy | =L act 1 infoy
if there is no perception;

goal : info1 1 perc :d>¢ infos and goal : info; | perc :d>¢ infoq
if there is no action;

goal : infoy T:dw infos and goal : infoy | :d>¢ infos
if there is neither perception nor action.

4.1 Goals

We have seen in Section 3.1 that a goal goal(dom,q) for knowledge retrieval
means that we deliberately look for an answer to question ¢ within knowledge
domain dom. Once the answer is found or the ignorance of the answer is estab-
lished, the goal is achieved and is removed from STM.

In more complex deliberate activities the knowledge domain might be re-
lated to the underlying purpose in our behaviour or represent a specific task to

Behaviour and Reasoning Description Language (BRDL) 11

carry out. Thus goal goal(dom,info) means that we deliberate want to achieve
the information in set info C O\I', which may comprise a perception, an ac-
tion and some of the information in the STM except goals. Therefore, a goal
goal(dom,info) in STM is achieved when

— the human has perc € info or II Ninfo =), and
— the human performs act € info or X Ninfo =), and
— info\IT\X\I" is included in STM,

where set difference ¢\’ is left associative.

4.2 Reasoning

One way to manipulate our internal knowledge is to infer new facts from other
facts that are in our LTM. The inferred facts are added to the STM and may be
preserved for the future either by transferring them to LTM through elaborative
rehearsal or by recording them in the external environment in some way, e.g.
through writing.

The LTM contains inference rules that we have learned throughout our life
and are applied deliberately. For example, consider a person who is learning
to drive. At some point throughout the learning process, the person learns the
following rule:

A driver has to give way to pedestrian ready to walk across the road on
a zebra crossing.

The premises of this rule are

zebra there is a zebra crossing, and
ped there are pedestrians ready to walk across the road.

The consequences is
goal(driving, gw) the driver’s goal is to give way to the pedestrians,

where gw is the fact that the driver has given way to the pedestrians, which has
to be achieved.
Inference rule

infer(driving) : {zebra, ped} | = {goal(driving, gw)},

models the fact that from the set of premises {zebra, ped} we can infer the set of
consequences {goal(driving, gw)} in knowledge domain driving. The premises
are not removed from the STM after applying the inference.

The general structure of an inference rule is

.) d
infer(dom) : premises 1=-| consequences.

The rule is enabled when special goal infer and the premises are in STM. The
application of the rule requires time d and removes both special goal infer and

12 Antonio Cerone

the premises from STM and add the consequences to it. Since normally premises
are not removed after applying the inference, it is common to use derived rule

infer(dom) : premises | =N consequences,

which is equivalent to infer(dom) : premises T:d>¢ premises U consequences.
Reasoning inference rules support all three main human reasoning modes:
deduction, abduction and induction. The rule for giving way to pedestrian pre-
sented above is an example of deduction.
The following example of abduction

A train that does not arrive at the scheduled time is late.

can be modelled as
infer(railway) : {arrivalTimePassed, noTrain} | N {trainLate}.

In this case the inference goes from the events, i.e. the arrival time is passed and
the train has not arrived yet, to the cause, i.e. the train is late. In reality, the
train might have been cancelled rather than being late.

Finally, the following example of induction or gemeralisation

if three trains in a row arrive late then all trains arrive late.

can be modelled as

infer(railway) : {trainlLate, train2Late, train3Late} | N {allTrainsLate}.

4.3 Interaction

Interaction concerns the perception and the manipulation of the external world
making use of internal knowledge. Consider again a person who is learning to
drive and has to deal with a zebra crossing. Normally the explicit attention of a
learner who is driving a car tries to focus on a large number of perceptions. If
we restrict the driving task (driving) to just a zebra crossing, explicit attention
involves only two perceptions: zebra and ped.

This restricted driving task may be modelled in BRDL as:

. goal(driving, {zebra, ped}) : 0| zebra SCN]] {zebra, goal(driving, {ped})},
goal(driving, {zebra, ped}) : O | ped %i {ped, goal(driving, {zebra})},
(driving, {ped}) : {zebra} | ped) {ped, infer(driving)},

. goal(driving, {zebra}) : {ped} | zebra N {zebra, infer(driving)},

. goal(driving, {gw}) : 0| SN stop | {gw}.

goal

T W N

After the driver has perceived the presence of zebra crossing and pedestrians
and stored zebra and perc in the STM (basic activities 1 and 3 or 2 and 4), an
inference rule enabled by the content of the STM is searched. This is the rule
defined in Section 4.2, which store gw in the STM, thus informing the driver
about the need to give way to the pedestrian. The driver complies with the rule
by performing action stop to stop the car (basic activity 5).

Behaviour and Reasoning Description Language (BRDL) 13
4.4 Problem Solving

Problem solving is the process of finding a solution to an unfamiliar task. In

BRDL problems to be solved are modelled by goals stored in STM. We illustrate

with an example how the knowledge stored in LTM may lead to the solution.
Consider the task of moving a box full of items. The STM contains

— goal goal(bozes, {moved, full});
— pieces of information notMoved and full.

Suppose to have the following obvious knowledge stored in LTM:

goal(bozes, { full}) : | full =] {full}
goal(boxes, {empty}) : |empty %i {empty}

goal(bozes, {empty}) : { full} T% remove | {empty}
goal(bozes, { full}) : {empty} T% fill L { full}

G W

(
(
goal(bozes, {moved}) : {empty, not M oved} T% move | {empty, moved}
(
(

Basic activities 1 and 2 model the explicit attention on whether the box is full
or empty. Basic activities 3 models the moving of an empty box. Basic activities
4 models the filling of an empty box. Basic activities 5 models the removal of
all items from a full box. We assume that the box may be filled or emptied with
just a single action.

None of the basic activities in LTM is enabled by the contents of the STM.
Therefore, first goal goal(boxes, {moved, full}) is decomposed into two goals of
knowledge domain boxes that control basic activities in LTM

goal(boxes, {moved}) and goal(bozes, {full})

and is replaced by them after time d; + ds + d3 + d4 + ds, which is needed
to explore all basic activities within the knowledge domain. Then, the contents
of the STM are removed from information {empty, notMoved}, which enables
the basic activities that are controlled by the two goals but not triggered by
perceptions. The resultant information {empty} is what is missing from the STM
to make progress in solving the problem. Therefore, a goal goal(boxes, {empty})
is added to the STM after a further ds + d5 time.

Goal goal(boxes,{empty}) is considered first, since it is the last one that
was added to the STM, and is achieved by performing basic activity 4. This
makes the box empty, thus enabling basic activities 3 and 5. Between the two,
basic activity 3 is chosen first since it is enabled by a larger amount of informa-
tion ({empty, notMoved} versus {empty}), thus moving the box and achieving
goal goal(boxes, {moved}). Finally, basic activity 5 is performed and also goal
goal(bozxes, { full}) is achieved.

14 Antonio Cerone

5 Automatic Basic Activities

Automatic basic activities are performed independently from the goals in the
STM. The general structure of an automatic basic activity is

dom : infoy 1 perc =L act J infos

where

dom is a knowledge domain, possibly a task;

— perc € II is a human perception;

info; C O\I is the information retrieved and removed from the STM;

— infos C O is the information stored in the STM;

act € X' is a human action;

— d is the mental processing time (up to the moment action act starts, but not
including act duration).

Also for automatic basic activities, perception and/or action may be absent.

Automatic basic activities originate from the proceduralisation in procedural
memory of repeatedly used deliberate activities in semantic memory. Consider
the example of driving learner’s behaviour at a zebra crossing, which was intro-
duced in Section 4.3. After a lot of driving experience, the driver’s behaviour will
become automatic. From the six deliberate basic activity in semantic memory
the following new automatic activity are created in procedural memory:

1. driving : 0| zebra éw {zebra},
2. driving : {zebra} | ped L, stop | {ped}.

Automatic basic activity 1 models the skill driver’s implicit attention focussing
on the zebra crossing, whose presence is unconsciously noted while approaching
it, either though direct sight or indirectly via a warning signal. With such an
automatic behaviour, the skilled drivers’s mental processing time from the mo-
ment the driver has seen the pedestrians and is aware of the zebra crossing to
the moment the stop action starts is d5. Taking into account that the application
of the zebra crossing inference rule introduced in Section 4.2 requires d mental
processing time, with the learner’s deliberate behaviour modelled in Section 4.3
such a mental processing time is either ds + d+ ds, if the driver notices the zebra
crossing first (deliberate basic activities 1 and 3), or d4 + d + d, if the driver
notice the pedestrians first (deliberate basic activities 2 and 4), which are both
expected to be greater than df. In this sense the skilled driver’s behaviour is
safer than the lerner’s behaviour.

6 Conclusion and Future Work

We have introduced the Behaviour and Reasoning Description Language (BRDL)
for describing human behaviour and reasoning as an extension of the Human

Behaviour and Reasoning Description Language (BRDL) 15

Behaviour Description Language (HBDL) presented in our previous work [2, 3].
BRDL semantics has been provided on-the-fly in terms of a basic model of human
memory and memory processes. We are currently implementing BRDL [4] using
Real-time Maude [15] as part of a formal modelling and analysis environment
that include both human components and system components [3].

The object-oriented nature of Real-time Maude supports a highly modular
implementation with separate modules describing alternative theory of cognition.
Moreover, the use of a number of parameters as the ones listed at the end of
Section 2.3 supports a fine-grain control of the applicability of Maude rewrite
rules. In our future work, we will use this feature to compare in-silico experiments
that use different combination of parameter values with the data collected from
real-life observations and experiments. This is expected to provide a calibration
of the cognitive architecture underlying BRDL and, hopefully, important insights
into alternative cognitive theory.

Finally, BRDL is a basic language easy to extend and adapt to new con-
texts. This important characteristic is matched at the implementation level by
exploiting Maude equational logic to construct new, complex data types.

Acknowledgments. The author would like to thank the four anonymous re-
viewers whose comments and suggestions greatly contributed to improve the

paper.

References

1. J. R. Anderson. The Architecture of Cognition. Psychology Press, 1983.

2. A. Cerone. A cognitive framework based on rewriting logic for the analysis of
interactive systems. In Software Engineering and Formal Methods (SEFM 2016),
number 9763 in Lecture Notes in Computer Science, pages 287-303. Springer, 2016.

3. A. Cerone. Towards a cognitive architecture for the formal analysis of human
behaviour and learning. In STAF collocated Workshops 2018 (FMIS), number
11176 in Lecture Notes in Computer Science, pages 216—-232. Springer, 2018.

4. A. Cerone and P. Olveczky. Modelling human reasoning in practical behavioural
contexts using real-time maude. In FM Collocated Workshops 2018 (FMIS), Lec-
ture Notes in Computer Science. Springer, 2019. In press.

5. A. M. Collins and M. R. Quillian. Retrieval time from semantic memory. Journal
of Verbal Learning and Verbal Behaviour, 8:240-247, 1969.

6. N. Cowan. What are the differences between long-term, short-term, and working
memory? Progress in Brain Research, 169:223-238, 2008.

7. A. Diamond. Executive functions. Annual Review of Psychology, 64:135-168, 2013.

8. A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Interaction. Pearson
Education, 3rd edition, 2004.

9. I. Kotseruba and J. K. Tsotsos. 40 years of cognitive architectures: core
cognitive abilities and practical applications. Artificial Intelligence Review,
https://doi.org/10.1007 /s10462-018-9646-y, 2018.

10. J. A. Laird. The Soar Cognitive Architecture. MIT Press, 2012.
11. N. Marti-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography. The-
oretical Computer Science, 285(2):121-154, 2002.

16

12

13.

14.

15.

16.

17.

18.

19.

Antonio Cerone

G. A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity to process information. Psychological Review, 63(2):81-97, 1956.

J. S. Nairne and I. Neath. Sensory and Working Memory, volume 4, Experimental
Psychology, chapter 15, pages 419-446. Handbook of Psychology, 2nd edition,
2012.

D. A. Norman and T. Shallice. Attention to action: Willed and automatic control of
behaviour. In Consciousness and Self- Regulation, volume 4 of Advances in Research
and Theory. Plenum Press, 1986.

P. C. Olveczky. Real-time maude and its applications. In Proc. of WRLA 2014,
volume 8663 of Lecture Notes in Computer Science, pages 42-79. Springer, 2001.

P. C. Olveczky. Designing Reliable Distributed Systems. Undergraduate Topics in
Computer Science. Springer, 2017.

A. V. Samsonovich. Towards a unified catalog of implemented cognitive architec-
tures. In Biologically Inspired Cognitive Architectures (BICA 2010), pages 195-244.
10S Press, 2010.

R. Sun, P. Slusarz, and C. Terry. The interaction of the explicit and implicit in
skill learning: A dual-process approach. Psychological Review, 112:159-192, 2005.
P. Verschure. Distributed adaptive control: A theory of the mind, brain, body
nexus. Biologically Inspired Cognitive Architectures, 1:55-72, 2012.

