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Abstract. Regret seems like a very negative emotion, sometimes even
debilitating. However, emotions usually have a purpose, in the case of
regret to help us learn from past mistakes. In this paper we first present
an informal cognitive account of the way regret is built from a wide range
of both primitive and more sophisticated mental abilities. The story in-
cludes Skinner-level learning, imagination, emotion, and counter-factual
reasoning. When it works well this system focuses attention on aspects
of past events where a small difference in behaviour would have made a
big difference in outcome – precisely the most important lessons to learn.
The paper then takes elements of this cognitive account and creates a
computational model, which can be applied in simple learning situa-
tions. We find that even this simplified model boosts machine learning
reducing the number of required training samples by a factor of 3–10.
This has theoretical implications in terms of understanding emotion and
mechanisms that may cast light on related phenomena such as creativity
and serendipity. It also has potential practical applications in improving
machine leaning and maybe even alleviating dysfunctional regret.
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1 Introduction

Regret seems such a negative emotion, worrying about what might have been
rather than about what could be. It seems so maladaptive and at best some
redundant extension of feelings that are worthwhile. However looking at it more
deeply it turns out to not only be a well-adapted feeling, but one that demon-
strates the rich interactions between different levels of cognition: rational thought,
vivid imagination and basic animal conditioning. Particularly interesting is the
role that quite complex assessments of probability plays in regret – the closer you
were to averting a disaster but failed, the worse it seems! Furthermore, regret is
associated with risk identification, risk-taking and prediction of potential out-
comes. For example, making a life decision, which is quite risky (with high levels
of uncertainty), can induce potential regret from not making this life decision,
which can be greater than from having made it.
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The origins of the models presented in this paper date back to an exploratory
essay [14] that led to the cognitive model described in section 2. This was followed
by an early version of the computational model in section 3, which suggested
potential positive learning effects but was only reported in informal talks. The
current work formulates these models more thoroughly and systematically ex-
plores and evaluates the full range of parameters and options within the model
allowing more rigorous and reliable analysis. Before proceeding to this, we will
examine some of the psychological literature on regret.

1.1 The psychology of regret

Rationality and agency The ability to perform hypothetical comparisons (i.e.
between an imagined state and a factual state) necessitate rational thinking and
the capability to mentally represent these (e.g. counterfactual thinking – [33]) in
defining anticipated regret), intention and risk-taking. Epstude and Roese [16]
defined two different pathways as responsible for experiencing and perceiving
regret. Information-based pathways directly affect intentions and consequently
behaviour. On the other hand, content-neutral pathways can facilitate indirect
effects from one’s mind-set, positive and negative affect and motivational fac-
tors. Both pathways act as functional regulatory platforms for managing goals
and ‘controlling’ behaviours within a socio-cognitive context. The foundational
concept of the functional theory of counterfactual thinking is goal-setting and
the comparison between current state and desired state.

At the same time, responsibility and agency appears to be critical in defining
and experiencing regretful emotions. For example, Zeelenberg et al. [41], sug-
gested that regret manifests -as an emotion- primarily to those that account
themselves as responsible for a regretful action or interaction. A theory devel-
oped that reflects this is the Decision Justification Theory [13], according to
which, decision-related regret is associated to comparative evaluation outcomes
and ‘self-blame’. Although self-blame can cause distress and negative emotions,
experiencing regret has the potential to lead to better decision-making in the
future.

Theories of regret A number of theories have been developed in the past aim-
ing to define or model regret ranging from economic theories to socio-cognitive
and interactional, including prospect theory [22] and regret theory [21]. Ac-
cording to Prospect theory, the losses and gains someone perceives are different
depending on how these are formulated and on what types of affect generate.
For example, if an investor is presented with two ‘equal’ options for invest-
ment opportunities, of which one is presented as associated to potential gains
while the other one as associated to potential losses, the investor will tend to
choose the former as an attempt to avoid the emotional impact that losses could
cause (also known as “loss-aversion” theory). Two fundamental components of
Prospect theory are the certainty (linked to probabilities) and the isolation effect
(when outcomes are the same with the same probabilities, but where there are
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different routes or pathways to achieve these). In such cases, investors tend to
follow ‘the known’ path or the one of ‘least resistance’ in an attempt to min-
imise their cognitive load. It is important to note that Prospect theory refers
to pairs of choices; when the number of choice options increase, the complex-
ity increases as well, due to additional interplaying factors. This is something
that ‘regret theory’ [21] aimed to address. In regret theory, a key aspect is the
so-called ‘choiceless utility function’, which represents the consequential state
one experiences if no specific choice is made. In effect, utility, in this context,
is associated with the psychological and human–computer interaction (HCI) no-
tions of pleasurability and desirability. In regret theory, an individual chooses
amongst multiple options, aiming to maximise the so-called “expected modified
utility”. Loomes and Sugden [21] posit that independently of whether someone
experiences regret or not, they will attempt to maximise the “expected modified
utility” when making decisions under uncertainty.

Recapitulation and reflection Prospect and regret theories focus on prospects
and probabilities estimations. In contrast, Norm theory [23] includes forward-
looking recapitulation of past events based on prior (or even currently expe-
rienced) ‘norms’. Such ‘norms’ can be very personal and specific for different
people suggesting individual differences in perception. Regret in such cases is de-
pendent on memories and the capability to recall and process these (e.g. through
mental simulation that can involve decision-making heuristics and biases).

The notion of mental simulation (and its role in perceiving regret) is further
linked with the concept of ‘mental models’ whereby mental representations (or
‘mappings’) of the world facilitate a network of interconnected pieces of informa-
tion that provide the ground-basis for reasoning and inferences generation [9–11].
Other ‘retrospective’ accounts of understanding regret includes the Reflection
Evaluation Model that supports that reflection and evaluation mechanisms in-
tertwine to promote comparative judgements that involve social, counterfactual
and temporal aspects [26, 27]. Reflections tend to be inherently experiential and
in support of a quasi-realistic simulated state or scenario that could be consid-
ered as ‘true’ at a given moment. On the other hand, evaluations tend to be
based on factual (and not fictional) past incidents that are then compared and
assessed on the basis of the goals fulfilment.

Regret and human–computer interaction Regret has an emerging role
within the HCI community. Recent research suggests that regretful behaviours
(i.e. in the form of interactions) can encourage ‘remediation strategies’ such
as deleting unwanted or regretful messages, an action that can in turn be-
come a source of confusion, uncertainty and information gaps. This is some-
thing prominent within certain demographic groups (e.g. teenagers), often asso-
ciated with perceptions of trust and privacy. In all cases, feelings of regret are
operationalised on the basis of psychological developmental theories for learn-
ing such as Pavlovian classical conditioning (stimulus-based associations that
support learning) [29, 12, 5], Skinnerian operant (or instrumental) conditioning
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(consequential-based behavioural learning) [35, 37], and Bandura’s Social Learn-
ing Theory which posits that learning occurs by observation (Bobo doll experi-
ment [4]). Indeed, psychological learning theories have been applied in the past
in the design and evaluation of technologies, including robotic and automated
systems (see e.g. Touretzky and Saksida’s operant conditioning Skinnerbots [38]
and [25]). Developmental research has also found that children’s decision-making
can be improved if regret is experienced [31, 28].

2 A Cognitive Model of Regret

This section presents a cognitive model of regret as an adaptive learning mech-
anism summarised from [14]. As regret is a complex emotion, the model builds
incrementally from simpler leaning mechanisms each step of which has benefit
in itself, as is necessary for plausible evolutionary development. The basic steps
are: (a) an unpleasant effect is experienced; (b) potential actions that might have
been causes are brought to mind; (c) a counter-factual assessment is made of
how close the key actions were to averting or reducing the bad effect; (d) this
modifies the emotional feeling of regret; (e) the image in memory of the past
action is available simultaneously with the current (modified) emotion; (f) sim-
ple associative memories are then formed. As is evident this includes very basic
associative learning, with emotion and imagination and even counterfactual rea-
soning. We will now look at these building blocks in more detail and see how
they come together to form the emotion we call regret.

2.1 Underlying Cognitive Systems that Enable Regret

Associative learning. We begin with basic Pavlovian and Skinnerian be-
havioural conditioning (see Section 1.1) as it is present in all but the most
basic animals. In simple associative learning, if you perform an action result-
ing in negatively perceived outcomes, then you learn not to repeat this action
again. In effect, associative learning is helping to identify relationships between
two or more stimuli (Pavlovian classical conditioning [5]). When associations are
already learnt, if a condition repeats (e.g. in the form of stimuli-trigger), then
feelings and experiences associated before to this stimuli re-emerge and give rise
to aversion or compliance to perform a task or make a decision [32]. Figure 1
(left) illustrates this with the example of touching a sharp thorn and learning it
is painful.

From reactions to foresight – proto-imagination. Basic associative learn-
ing requires near simultaneous presentation of action and consequence, for more
complex learning some form of memory imagery is required. This is also needed
for momentary forward planning, which may be its origin. Complex planning
allows both re-active and pro-active behaviours for action and decision-making.
More advanced conscious planning behaviours are part of meta-cognitive abili-
ties related to socio-cultural and socio-cognitive activity [2] and are affected by
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Fig. 1. (left) Simple associative memory: (1) touch thorn; (2) thorn pricks finger; (3)
evaluation – Ow! it hurts! (4) learnt association – touching thorn is bad.
(right) Momentary planning: (1) prospective imagination of planned action; (2) causes
similar brain activity to actually doing it! (3) learnt association fires; (4) veto of planned
action.

attitudes, beliefs, motivations and goals, all of which contribute to imagination
and forward-planning [19]. Indeed, adaptive and dynamic self-regulatory mecha-
nisms are necessary to support scaffolding and planning both within short-term
and long-term contexts [1]. However, there is a lower and more primitive level
of foresight when, for example, one half-imagines what is going to happen as
one reaches for a door handle and hence surprised if the door is jammed. At
multiple levels we have predictive abilities that enable us to prepare to act even
before sensing the world [8]. However, this momentary foresight still needs a level
of proto-imagination as illustrated in Figure 1 (right), which leverages the way
intention and action cause similar neural activity.

Dealing with delays. As noted, simple associative learning is attenuated by
any delay between action and consequence (for a detailed review of the delay
literature see [20]); such effects can also be associated with feedback and rein-
forcement loops and time retention [18, 36]. Indeed, effects of delays and impact
on neural dynamics and learning have been explored before within the context
of neural network simulations [3]. In reality incidents never happen absolutely
simultaneously, but if brain activation decays slowly enough by the time a con-
sequence occurs the areas associated with the last action may still be active
enough to cause learning.

These learning effects reduce significantly once the delay is more than a few
seconds. For simple creatures this means that learning of delayed consequences
is all but impossible. More cognitively complex animals do appear to be able to
learn delayed consequences using some form of recall, even without full human
memory. Figure 2 (left) shows how this can occur bringing past related events
into one’s imagination and hence making past events and present consequences
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available for low-level associative learning. This then forms the basis for more
complex learning in the interplay of memory, imagination and procedural skills
[15] and later still to organising knowledge and structuring learning [40].

Fig. 2. (left) Dealing with delayed feedback: (1) touch unusual plant; (2) some hours
later finger is sore; (3) evaluation – Ow that hurts! (4) desire to make sense; (5) recent
salient events brought to mind – retrospective imagination; (6) causes simultaneous
activation in relevant areas; (7) learnt association – don’t touch that plant again!
(right) Regret reinforcing critical learning: (1) logical deduction of what mattered de-
termines what is brought to mind; (2) imagination causes simultaneous activation in
relevant areas; (3) causes negative emotion “if only I hadn’t” . . . regret; (4) counter
factual deduction of how much it matters influences strength of emotion; (5) learnt
association stronger or weaker depending on strength of emotion.

2.2 Regret as a Learning Mechanism

Attention in memory and counter-factual reasoning. A crucial element
of association-making so far is the near simultaneity of imagined events. For ex-
ample, recalling high school memories can evoke imagination processes whereby
multiple separate events from that time intertwine and fuse in one go. For a
sequence of events, because we focus on just a few highly salient events (e.g.
touching a plant and feeling), we can replay potentially lengthy sequences in
fast-forward and hence bring events close enough for learning to occur. How-
ever, if all past events are equally present, there cannot be effective learning. It
is crucial that the most appropriate past events are remembered.

If through this more rational consideration of events we decide that particular
actions or stimuli were not relevant to the good or bad consequences, these ‘drop
out’ of the story of the events so that those that are recalled most strongly as
we replay the events in our mind are precisely those which were part of the
casual chain leading to the effect. In particular, in the case of negative effects, it
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is the things that if we ‘only had not done’ that are recalled – regret. Because
of this regret we are able to associate negative emotions with the right actions,
those that we would wish to avoid in future. This is shown in steps 1-3 in
Figure 2 (right).

Note that this association is different from declarative knowledge that one
might remember and think about logically later. Whilst the potential ill effects
of a night on the town are something one can consider at leisure, in situations re-
quiring fight or flight responses the difference between rapid emotional reactions
and more rational consideration is crucial [24].

Boosting near misses. Regret has another adaptive mechanism – the tuning
of the strength of emotional response depending on the probability that our
actions were the principal cause (credit assignment in AI terms). Some of the
actions we perform may have contributed to a bad effect, but we’d have had to
do something very unusual or perhaps some other additional actions to avoid the
effect. However, other actions are ones where we feel they could very nearly have
been different and changed things. Steps 4 and 5 in Figure 2 illustrate this, as
well as bringing relevant events to mind, the counter-factual “what if ” reasoning
amplifies the emotional response where a small change in behaviour could have
made a large difference to outcomes.

For example, if you had bought a lottery ticket with the right number on
it you would have won a million pounds, but you could easily have not got the
right one – you don’t feel too bad. However, imagine you almost chose to buy
the lottery ticket with your birth date on, but decide not; later you find that
the number came up – you are likely to feel more regret. Indeed research has
suggested that regret aversion can partially be responsible for not exchanging
lottery tickets even when there is a possibility of high material gain [39].

This lesser feeling of regret when things you did were less significant in the
result and greater when what you did almost tipped the scales and made a
difference is perfectly sensible. Higher emotional intensity can lead to higher
levels of learning and stronger negative feelings (including jealousy and envy
[42] as well as regret) attached to the action can affect actions and decisions to
be made in future incidents.

Recapitulation. The final part of the learning armoury of regret is also the
aspect that is most problematic in day-to-day life. Some events cause immediate
regret, such as burning the toast, but are soon forgotten (perhaps due to the
severity level of the incident or the impact value). However others, that have had
especially large impact, become a repetitive rumination, which can be psycho-
logically crippling, but, when not pathological, is also a learning mechanism. In
machine learning it is common to use several copies of examples that are both
rare and significant in order to improve learning. In a similar way the repeated
exposure to the imagined events means that their learning impact is increased.
In a situation, such as a near miss from being eaten by a wild animal, this is
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clearly critical for survival as we do not want to have to repeat such experiences
in order to learn.

2.3 Cognitive Model Summary

In summary, regret is a subtle and well-adapted mechanism that enables us to
learn effectively from the past recruiting deep (evolutionarily old) mechanisms.
In particular, although regret allows us to manage “if only” statements, the
mechanisms do not deal with more complex modalities such as “if only but I
couldn’t have known”, or “if only, but it will never happen again”. In effect, cer-
tain contextual parameters are not considered when processing (or experiencing)
regret. Whilst we may be able to do the reasoning for these (although the former
seems to elude many), these are not able to mollify the emotional reactions of
regret.

It is interesting to note that regret is often considered purely as a negative
emotion. Indeed there no single word for the positive equivalent of regret “it
worked but only because”? Empirical studies in economics and psychology show
that humans have a tendency to weigh negative results more strongly than posi-
tive ones, perhaps because ‘in the wild’ not learning to avoid bad things may kill
you whereas missing good things simply means you have to try another time. As
an adaptive mechanism regret shows that not only are negative effects stronger,
but that we have additional mechanisms for negative emotion that may not exist
for their positive counterparts.

3 A Computational Model of Regret

Aspects of the cognitive model have been built into a computational model. This
was initially intended solely as a means of exploring and validating the cognitive
model. For this, the core question was “does regret aid learning”, and this will
be addressed by looking at two metrics:

– asymptotic score – does it do better in the long run
– rate of learning – does it get to the same score with less exposures

The former is the obvious quality metric, but the second is critical in real-
life situations where experience is precious: for early humankind experiments
could be fatal. The computational model is not expected to mimic real human
data as human learning typically involves multiple simultaneous mechanisms.
The intention instead is to explore the plausibility of the cognitive model, by
evaluating the efficacy of the cognitively inspired computational model.

While these initial aims are about cognitive understanding, we will see that
the results also show promise as a technique to boost machine learning effi-
ciency, especially in contexts when obtaining learning examples is costly. Com-
putational experiments may not risk immediate death, they still consume time
and energy, contributing to global carbon emissions and ultimately cataclysmic
climate change.
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3.1 Overall Architecture

Figure 3 shows the overall architecture of the model. The machine learning
module interacts with an environment, which in our experiments is a simplified
variant of the card game Pontoon. The machine learning module has two main
parts a basic learning component and the regret module. The architecture is de-
signed so that the regret module is loosely coupled and can be added to different
forms of underlying learner and environment.

Fig. 3. Computational model architecture.

3.2 Example Game – Simple Pontoon

A simple version of Pontoon was chosen for these experiments as it is stochastic,
offering challenge to the learner, but also simple enough to have perfect posterior
knowledge, allowing very simple counter-factual evaluation.

Pontoon, or vingt-un is played with a normal pack of 52 cards. The player(s)
and banker receive two cards each. Players may choose to ‘twist’ (receive an
extra card) or ‘stick’ (keep the cards they have). The banker has a fixed rule
for doing this: twist if the total is less than 17, stick otherwise. The aim is to
have a hand with a higher total than the banker without going over 21 (called
‘going bust’). The simplified version used in the experiments only has cards with
values 1, 2 and 3 and the limit is 4 rather than 21 (so that a total of 5 or 6
is‘bust’). The player and banker initially are dealt one card each and can have
only one extra card. Furthermore, the extra cards are ‘dealt’ even if the player
or banker stick to enable perfect posterior knowledge, but the additional cards
are only counted in the score if the player/banker had chosen to twist before
‘seeing’ their card. Table 1 shows the rules for when the player wins or looses.
This is then translated into a score of 10 for a win or -10 for a loss, but this may
be modified by the regret module.

Because the game is so simple it is possible to exhaustively calculate all
possible games (81 in total) and the expected winnings for each play. The best
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possible play strategy leads to winning just over one third of the time. Scoring
a win as 10 and loss as -10, this gives an expected best possible score of -3.09
and corresponding worst possible score of -7.53. (Note that in the long-term the
banker always wins, hence even the optimal strategy yields a negative expected
score.) The actual scores from learning can be compared with these to see how
close to optimal the learner becomes or normalised as a percentage of optimal
gain by transforming a raw score of x into 100 × (x + 7.53)/3.44, so that the
worst possible strategy corresponds to a normalised score of 0 and the optimal
strategy is 100%. This normalised value is used in subsequent discussion and
graphs.

Table 1. Simple Pontoon Rules (cards 1-3 only). Rules apply in order..

condition outcome

player bust (> 4) lose
banker bust (> 4) win
player > banker win
player = banker lose
player < banker lose

3.3 The Environment

Although we use a specific game, this is presented to the machine learning com-
ponent as a generic stimulus–response–effect environment (Fig. 4). When re-
quested, the environment generates a new stimulus (generateBefore – the ‘be-
fore’ state); in the case of the Pontoon game, this is two cards (in the range
1–3), one each for the player and banker. It also provides a set of potential
‘plays’ (getPlays), possible actions that the player can choose take; in the case
of Pontoon just ‘stick’ (keep the current card only) or ‘twist’ (have an additional
card). The machine learning component chooses a play and the environment re-
turns an ‘after’ state (generateAfter), which may depend on the chosen play,
but also may involve stochastic elements; in the case of Pontoon a second card
each for the player and banker. In some games, there is a clear arc of progress
from start to finish, hence the before and after states are potentially of dif-
ferent types, but in other kinds of ongoing situations, these may be the same.
Finally, an evaluation function (evaluate) gives a feedback score based on the
before and after states and chosen play.

3.4 The basic learning component

The abstract interface of the basic learning module (Fig. 5) has two principal
methods. The first, getResponse, takes a stimulus and set of possible responses
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Before generateBefore();

Play[] getPlays( Before before );

public After generateAfter( Before before, Play play );

double evaluate( Before before, Play play, After after);

Fig. 4. Abstract interface of the game /environment component.

and returns a chosen response. The second, condition, takes an evaluation of
the response (e.g. win or lose in Pontoon) and uses this to update its internal
state.

The basic learning module used in experiments is a Skinner-like stimulus–
response engine. This has an exhaustive table of all previous stimulus–response
pairs and evaluation weight for each. For the simple learner the stimulus and
response are completely opaque, simply used to look up or set relevant values;
however a more complex learner, such as a neural network, might need a more
detailed representation in order to generate generalised strategies.

When asked to provide a response the Skinner module consults its table to
find the evaluation of each matching stimulus–response pair. Previously unseen
pairs are given a default weight. Variations in this default weight alter the extent
of novelty seeking vs. risk aversion of the learner. The weights of the possible
responses are used to generate a probability and the module then stochastically
selects a response. The probability distribution of the response is parametrised
by a power value: a power of 1 giving a linear probability (response with weight 2
twice as likely as weight 1), a power of two using squared weights and a nominal
11 acts as a ‘winner takes all’ where the response with the highest weight is
always chosen.

The update function simply adds the effect to the current weight of the
stimulus–response pair, with non-linear Sigmoid applied to keep it within a +/-
100 range.

Response getResponse( Stimulus stimulus, Response[] responseSet );

void condition( Stimulus stimulus, Response response, double effect );

Fig. 5. Abstract interface of the learning component.

3.5 The Regret Module

The regret module is surprisingly simple, perhaps underlining how it builds on
previous aspects of cognition. Figure 6 is the core function that implements re-
gret. Without regret, the basic learning algorithm (learner.condition) would
use the raw effect to modify the conditioning feedback. The counter-factual rea-
son is embodied in the function findBestResponse. This uses posterior knowl-
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edge to predict what would have happened if any other play had been done and
then returning the best possible result. In simple situations we may have perfect
posterior knowledge, but in complex ones this may involve some form of uncer-
tain or probabilistic inference. For example if you slip whilst rock climbing and
are saved by the rope, you may factor in an element of “but the rope might not
have held” even though you survived this time.

learn( stimulus, response, afterwards, effect):

best = findBestResponse( stimulus, afterwards)

regret = best - effect

emotion = effect // equal to effect without regret

IF ( effect >= 0 ) {

THEN emotion = effect * POS_NO_REGRET_FACTOR - regret * POS_REGRET_FACTOR

ELSE emotion = effect * NEG_NO_REGRET_FACTOR - regret * NEG_REGRET_FACTOR

learner.condition(stimulus,response,emotion)

Fig. 6. Pseudocode for regret thinker. The only adaptation to the basic learning func-
tion is to modify the strength of positive or negative feedback.

The regret thinker has several adjustable parameters: two each for positive
and negative outcomes. The NO REGRET factors are about modifying the effect
when the outcome was as good as it could be. The REGRET factors about modi-
fying things when there was a better option (regret > 0). These are separate
factors because human emotional responses tend to be different to otherwise
‘equal’ positive and negative situations. For example, we might expect a ‘no
regret’ situation to potential reduce the negative feelings for a negative out-
come “well I did the best I could”, but boost the positive feelings for a positive
outcome.

The earliest code only had ‘negative’ regret, that is only the second arm
of the ‘if statement when the initial effect was less than zero (a loss), as this
corresponded to the day-to-day meaning of the term. However, the code looked
‘messy’ and hence, we experimented with adding the alternative and found that
this boosted learning. Essentially this is a ‘grass is greener ’ emotion, for example
if eating and enjoying a meal in a restaurant you might see someone else eating
a different meal that look very tasty and then feel less happy about your own
meal!

4 Experimental results

The underlying learner and regret engine have a significant number of param-
eters. We ran experiments over a wide range of configurations to avoid chance
conclusions. We present typical examples, and summary views; the full data is
available online at https://alandix.com/academic/papers/regret-2021/.
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4.1 Obtaining Learning Saturation and Reducing Stochastic Noise

Both the basic Skinner-like learning and regret-enhanced learning make rapid
initial gains in average game scores with the majority of learning gains over
the first 1000 exposures. Learning slows but continues at a slower pace, so we
have run all experiments to 10,000 iterations to examine asymptotic saturated
learning. This approach to saturation is evident in the example run in Figure 7.

Fig. 7. Learning scaled to min/max possible scores showing better asymptotic values
and faster learning. (linear weight, mild risk aversion, negative regret only).

Each run is stochastic, both in terms of the cards played and also the re-
sponse of the low-level learning algorithm. Running over large numbers of iter-
ations means that much of the randomness averages out as learning progresses,
but substantial variation remains. The standard deviation of scores in the Pon-
toon game is approximately 1, 0.3 and 0.1 at 100, 1000 and 10000 iterations
respectively. We therefore run each configuration 10000 times and created av-
erage learning traces with distribution statistics. This replication and averaging
therefore means that the standard deviations of reported means are about 0.01,
0.003 and 0.001 at 100, 1000 and 10000 iterations respectively, or approx. 5%,
1.5% and 0.5% for normalised scores such as Figure 7. Note that the variation is
still quite large early in learning until about 100 iterations, and this is evident
in some of the results (e.g. Fig. 8). Detailed studies of early learning would need
more replications, but we will confine ourselves to further along the learning
process when a greater level of learning has been achieved.

4.2 Observed Behaviour

Figure 7 shows a typical run, in this case parameterised for linear weighting of the
Skinner learner, mild risk aversion and negative regret only. The graph highlights
two aspects. First is the improvement in learning : the scores at the end of this
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particular rule are 90.8% for the basic learner rising to 95.3% when regret is
added. Both are still slowly rising with further learning even at 10000 iterations,
so it is possible that the basic learning will eventually reach similar levels, but
clearly only after vast numbers of learning steps. Second is faster learning : the
regret learner obtains the same level of learning after fewer iterations. We look
at both in more detail below.

While the exact numbers vary for different parameter configurations, the
overall pattern is similar. For example, in the winner takes all, high risk averse,
positive regret configuration, the asymptotic learning is closer to 100%, but there
is still substantial improvement (97.3% for basic learning vs. 98.4% for regret).
There is also consistent speedup of around 2.5 times faster (regret reaches 97.3%
after only 3600 iterations).

Fig. 8. Speed up, log-scale – number of regret exposures to reach same quality of
learning as simple learner. Note higher variation for smaller numbers of trials. (linear
weight, mild risk aversion, negative regret only).

Faster learning . Although this is evident in Figure 7, it is hard to assess the
precise gain. Figure 8 represents the same data by plotting how long it takes
the regret learner to obtain the same level of learning as the simple learner
without regret. The lower part of the graph is quite noisy (even with 10,000
replications!), but the data is stable after about 100 iterations and clearly shows
that adding regret substantially reduces the number of iterations required. In
this case, the difference is about 0.5 on the log scale for much of the range,
corresponding to a speed-up ratio (as measured by number of iterations) of
just over 3. This is typical over the range of configurations, with speed-up ratios
between 2.5 and 10 times in the central part of the range. Note too that the speed
up increases towards the higher values in Figure 8. This is possibly because the
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saturation value is higher for regret (better asymptotic learning), so that an
extended version of the graph would see the lower curve level off with the simple
learner never reaching the same levels of learning.

Better learning. As noted, the example run in Figure 7 appears to show an
improvement in asymptotic learning. This is observed across all configurations of
parameters tested. Figure 9 compares learning of the basic learner compared to
those with regret for a wide variety of parameter configurations for the Skinner-
like learner and regret. The graph on the left shows performance after 1000
learning iterations and the right shows 10,000 learning iterations. Each dot shows
the normalised average score over all 10,000 replications of the same parameter
configuration. The x and y axes show the percentage of maximum score obtained
by the simple learner and the same leaner with regret added. Note that the axes
show different ranges on the left and right graphs as for both simple and regret
learners the performance continues to improve over this range. The six vertical
lines of dots on each graph are because there are six configurations of the simple
learner and for each of these six alternative configurations of regret were added.

Fig. 9. Comparative scores after (left) 1000 iterations (right) 10,000 iterations.

The dashed line on each graph denotes equal learning. As is evident in ev-
ery configuration of the simple learner regret improves performance. Some of
the regret configurations improve it more than others, but all make substantial
improvements. The dotted line shows the half-way point between the simple
learner performance and perfect performance. As is evident, adding regret is
close to or exceeds this mark, especially at higher levels of learning. That is, in
many cases, regret halves the gap between the basic learning performance and
perfect learning.

If one examines the cases in more detail, there are patterns amongst the
various regret parametrisations. Positive regret on its own is not as effective as
negative regret or both combined. However, we will not explore these in detail
here as these differences may relate to the specific example game, where there
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was only win or lose, hence no way for an alternative action to have been better
than a win. One point that is promising is that if anything the proportionate
improvements (in the sense of how much they make the outcome nearer to opti-
mal) are better with the more effective Skinner-learner configurations. Although
we would be cautious in generalising this, it does suggest the boosting effect of
regret is not limited to poor learners.

4.3 Computational Model Discussion

Our initial reason for creating a computational model of regret was to validate
and explore properties of the cognitive model. However, we have seen that it also
shows promise as a way to enhance other machine learning algorithms. Regret
is often used as a metric within machine learning for both practical algorithms
and as part of theoretical analysis (e.g. [6, 34, 43]). In addition, some algorithms
such as Counterfactual Regret Minimization [44] and Deep Counterfactual Re-
gret Minimization [7] work explicitly to minimise regret. However, the ability to
‘bolt on’ regret to existing algorithms does not appear to have been exploited
previously.

Over recent years there has been growing interest in what has been termed
‘human-like computation’ [17, 30], not least in order to emulate the single-shot
learning of higher-cognition compared to the vast number of exposures needed by
sub-symbolic learning. Regret sits somewhere between the two achieving fewer
shot learning and offering insights into the way higher- and lower-level cognition
can work together. This is important as forms of hybrid learning are likely to be
essential for next generation AI.

The computational model has also yielded some promising insights into regret
itself, not least the importance of what we have called ‘positive regret’, that is the
‘grass is greener ’ effect after making even a decision with positive consequences.
This can of course be problematic if one does not fully appreciate the positive
things that happen, but it does improve learning, especially to help escape local
maxima.

Finally, although not a new insight, the experimental results emphasise the
methodological importance of (a) exploring the space of free-parameters and (b)
running sufficient replications.

On the first of these, it is common in the machine learning literature to
see papers that quote many fine-tuning parameters, such as network sizes or
relaxation constants without any explanation of why the values were chosen or
whether they are critical to the results. In early explorations of the regret model
it appeared that positive regret was actually substantially more important than
negative regret in terms of faster learning, however when a wider parameter-
space was explored this effect was not found to be consistent, and restricted to
‘winner takes all’ low-level learning where local maxima are harder to escape. It
would have been easy to publish these early results, which would have not only
been misleading, but not exposed the underlying properties of positive regret.

On the second methodological point, many machine learning methods in-
clude stochastic or pseudo-random elements. The results are therefore also likely
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to have variability. The models used in this paper have very small numbers of
learned weights (a few dozen) compared to many millions or billions in deep
neural networks (DNNs). However, even so, many replications were needed in
order to obtain statistically reliable results. The sizes of many DNNs makes this
level of replication all but impossible, creating significant challenges in assess-
ing sensitivity and reliability for safety critical applications and in interpreting
results theoretically.

5 Conclusions and Future Work

The models presented offer both theoretical insight into regret as a human emo-
tion and practical potential as a way to enhance machine leaning. Future work
will explore both of these directions and also the way that understanding of
regret and associated cognitive functions can be used as part of interactive ap-
plications that can help users to enhance the positive aspects and control the
negative ones.

Future regret modelling may include mapping associative emotions to regret
to create an ecological context whereby a richer (perhaps more enhanced and re-
alistic) model of regret can be generated. In particular, we would like to explore
the recapitulation aspect of regret that is not included in the current computa-
tional model and is critical in pathological regret. Given the dynamic nature of
emotions (positive or negative), a next step would also include to explore more
dynamic (or interactive) models of emotions that can be calibrated on-the-fly
through different technological means. In that way platforms of ‘in-the-wild’
modelling that supports different layers of ‘human-in-the-loop’ interactions can
be further designed. Indeed, there is an ongoing research on interactive Machine
Learning approaches, utilised to provide ‘verification’ mechanisms to the data
quality fed and to the generated outputs. Furthermore, the explorations and
incorporation of positive emotion dynamics (even when modelling negative emo-
tional responses) would be another direction to advance modelling approaches
and techniques for experiential phenomena, acknowledging, in that way, the com-
plexity and contextuality of human emotions.
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