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Abstract. Shape information is crucial for human perception and cog-
nition, and should therefore also play a role in cognitive AI systems.
We employ the interdisciplinary framework of conceptual spaces, which
proposes a geometric representation of conceptual knowledge through
low-dimensional interpretable similarity spaces. These similarity spaces
are often based on psychological dissimilarity ratings for a small set of
stimuli, which are then transformed into a spatial representation by a
technique called multidimensional scaling. Unfortunately, this approach
is incapable of generalizing to novel stimuli. In this paper, we use convo-
lutional neural networks to learn a generalizable mapping between per-
ceptual inputs (pixels of grayscale line drawings) and a recently proposed
psychological similarity space for the shape domain. We investigate dif-
ferent network architectures (classification network vs. autoencoder) and
different training regimes (transfer learning vs. multi-task learning). Our
results indicate that a classification-based multi-task learning scenario
yields the best results, but that its performance is relatively sensitive to
the dimensionality of the similarity space.
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1 Introduction

Shape information plays an important role in human perception and cogni-
tion, and can be viewed as a bootstrapping device for constructing concepts
[18, 33, 40]. Based on the principle of cognitive AI [42, 44], which tries to base
artificial systems on insights about human cognition, also artificial agents should
be equipped with a human-like representation of shapes.

In this paper, we employ the cognitive framework of conceptual spaces [24],
which proposes a geometric representation of conceptual knowledge based on
psychological similarity spaces. It offers a way of neural-symbolic integration
[23, 46] by using an intermediate level of representation between the connec-
tionist and the symbolic approach, which are represented by artificial neural
networks and entirely rule-based systems, respectively. The overall conceptual
space is structured into different cognitive domains (such as color and shape),
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which are represented by low-dimensional psychological similarity spaces with
cognitively meaningful dimensions. Conceptual spaces have seen a wide variety
of applications in artificial intelligence, linguistics, psychology, and philosophy
[34, 70]. Typically, the structure of a conceptual space is obtained based on dis-
similarity ratings from psychological experiments, which are then translated into
a spatial representation through multidimensional scaling [14]. In this paper, we
consider a recently proposed similarity space for the shape domain [9, 10, 11].

The similarity spaces obtained by multidimensional scaling are not able to
generalize to unseen inputs – a novel stimulus can only be mapped into the sim-
ilarity space after eliciting further dissimilarity ratings [6]. In order to generalize
beyond the initial stimulus set (which is necessary in practical AI applications),
we have recently proposed a hybrid approach [8]: Psychological dissimilarity rat-
ings are used to initialize the similarity space, and a mapping from image stimuli
to coordinates in this similarity space is then learned with convolutional neural
networks. Both our own prior study [8] and related studies by Sanders and Nosof-
sky [58, 59] used a classification-based transfer learning approach on relatively
unstructured similarity spaces involving multiple cognitive domains. In contrast
to that, the present study focuses on the single cognitive domain of shape and
investigates a larger variety of machine learning setups, comparing two network
types (classification network vs. autoencoder) and two learning regimes (transfer
learning vs. multi-task learning).

The remainder of this article is structured as follows: In Section 2, we provide
some general background on convolutional neural networks, conceptual spaces,
and the cognitive domain of shapes. We then describe our general experimental
setup in Section 3, before presenting the results of our machine learning experi-
ments in Section 4. Finally, Section 5 summarizes the main contributions of this
article and provides an outlook towards future work. All of our results as well
as source code for reproducing them are publicly available on GitHub [7].1

2 Background

Our work combines the cognitive framework of conceptual spaces [24] (Section
2.1) applied to the cognitive domain of shape (Section 2.2) with modern machine
learning techniques in the form of convolutional neural networks (Section 2.3),
following a hybrid approach (Section 2.4). In the following, we introduce the
necessary background in these topics.

2.1 Conceptual Spaces

A conceptual space as proposed by Gärdenfors [24] is a similarity space spanned
by a small number of interpretable, cognitively relevant quality dimensions (e.g.,
temperature, time, hue, pitch). One can measure the difference between two

1 See https://github.com/lbechberger/LearningPsychologicalSpaces/.

https://github.com/lbechberger/LearningPsychologicalSpaces/
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observations with respect to each of these dimensions and aggregate them into
a global notion of semantic distance. Semantic similarity is then defined as an
exponentially decaying function of distance.

The overall conceptual space can be structured into so-called domains, which
represent, for example, different perceptual modalities such as color, shape,
taste, and sound. The color domain, for instance, can be represented by the
three dimensions hue, saturation, and lightness, while the sound domain
is spanned by the dimensions pitch and loudness. Based on psychological
evidence [2, 62], distance within a domain is measured with the Euclidean metric,
while the Manhattan metric is used to aggregate distances across domains.

Gärdenfors defines properties like red, round, and sweet as convex regions
within a single domain (namely, color, shape, and taste, respectively). Con-
cept hierarchies are an emergent property of this spatial representation, such as
the sky blue region being a subset of the blue region. Based on properties,
Gärdenfors now defines full-fleshed concepts like apple or dog by using one con-
vex region per domain, a set of salience weights (which represent the relevance
of the given domain to the given concept), and information about cross-domain
correlations. The apple concept may thus be represented by regions for red,
round, and sweet in the domains of color, shape, and taste, respectively.

This geometric representation of knowledge enables a straightforward imple-
mentation of commonsense reasoning strategies such as interpolative and ex-
trapolative reasoning [17, 61]. It also allows us to model concept combinations
such as green banana by restricting the region of the banana concept in the
color domain to the region representing green and then updating the regions
in other domains (such as taste) based on the aforementioned cross-domain
correlations (e.g., by restricting it to the sour region). Moreover, conceptual
spaces can be linked to the prototype theory of concepts from psychology [56],
which states that each concept is represented by a prototypical example and
that concept membership is determined by comparing a given observation to
this prototype. In conceptual spaces, a prototype corresponds to the center of a
conceptual region, which adds further cognitive grounding to the framework.

Conceptual spaces form an intermediate layer of representation that can act
as a bridge between the symbolic layer and the connectionist layer [43]: Connec-
tionist approaches make use of artificial neural networks and usually consider raw
perceptual inputs (e.g., pixel values of an image), which can be interpreted as a
very high-dimensional feature space (e.g., one dimension per pixel). These sys-
tems are often difficult to interpret and cannot model important principles such
as compositionality. Symbolic approaches on the other hand are based on for-
mal logics, but suffer from the symbol grounding problem [27], which means that
the symbols they operate on are not tied to perception and action. Conceptual
spaces can be used as an intermediate representation format which translates
between these two approaches: Using a connectionist approach, raw perceptual
input can be mapped onto the relatively low-dimensional and interpretable con-
ceptual space. Points in this conceptual space can then be mapped to constants
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and variables from the symbolic layer, while conceptual regions correspond to
symbolic predicates. This way, the advantages of both classical approaches can
be combined in a cognitively grounded way.

2.2 The Cognitive Domain of Shapes

Over the past decades, there has been ample research on shape perception in
different fields such as (neuro-)psychology [4, 12, 13, 22, 30, 31, 41, 45, 50, 54, 66],
computer vision [15, 47, 49, 71], and deep learning [3, 25, 38, 63]. Although so far
no complete understanding of the shape domain has emerged, there exist some
common themes that appear in multiple approaches, such as the distinction
between global structure and local surface properties [3, 4, 12, 30], or candidate
features such as aspect ratio [4, 12, 15, 45, 47, 50, 66, 71], curvature [12,
13, 15, 47, 50, 66, 71], and orientation [4, 15, 45, 31, 54, 66, 71].

In the context of conceptual spaces, Gärdenfors [24] mainly refers to the
model proposed by Marr and Nishihara [45], which uses configurations of cylin-
ders to describe shapes on varying levels of granularity. This cylinder-based rep-
resentation can be transformed into a coordinate system by representing each
cylinder with its length, diameter, and relative location and rotation. If the num-
ber of cylinders is fixed, one can thus derive a conceptual space for the shape
domain with a fixed number of dimensions. A related proposal for representing
the shape domain within conceptual spaces has been made by Chella et al. [15],
who use the more powerful class of superquadrics as elementary shape primi-
tives, allowing them to express many simple geometric objects such as boxes,
cylinders, and spheres as convex regions in their similarity space.

Both existing models of the shape domain within the conceptual spaces
framework define complex shapes as a configuration of simple shape primitives
and follow therefore a structural approach [22]. The number of primitives neces-
sary to represent a complex object may, however, differ between categories. Since
two stimuli can therefore not necessarily be represented as two points in the same
similarity space, it becomes difficult to compute distances between stimuli. Also
the psychological plausibility of these approaches has so far not been established.

In order to provide a conceptual space representing the holistic similarity
of complex shapes, Bechberger and Scheibel [9, 10, 11] therefore followed a dif-
ferent approach: As stimuli, they used sixty line drawings of everyday objects
from twelve different semantic categories (such as appliance, bird, building,
and insect), taken from different sources and adjusted such that they match in
relative object size as well as object position and object orientation (see Figure
1a). Six categories contained visually similar items (e.g., appliance and bird),
while the other six categories were based on visually variable items (e.g., build-
ing and insect). Bechberger and Scheibel conducted a psychological study with
62 participants, where an explicit rating of the visual dissimilarity for all pairs of
items was collected, using a five-point scale ranging from ”totally dissimilar” to
”totally similar”. In a small control experiment, Bechberger and Scheibel verified
that the elicited ratings targeted shape similarity rather than overall conceptual
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Fig. 1. (a) Example stimulus from the study by Bechberger and Scheibel [11].2(b)
Correlation of distances in the similarity space to the original dissimilarity ratings. (c)
Artificial neuron as nonlinear transformation of a weighted sum.

similarity. Using the averaged dissimilarity ratings over all participants, they
then applied an optimization technique called multidimensional scaling (MDS)
to obtain similarity spaces of different dimensionality. MDS represents each stim-
ulus as a point in an n-dimensional space and ensures that geometric distances
between pairs of stimuli reflect their psychological dissimilarity [14].

Their investigations showed that the resulting shape spaces fulfilled the pre-
dictions of the conceptual spaces framework: Distances had a high correlation
to the original dissimilarities (see Figure 1b), and visually coherent categories
(such as appliance and bird) were represented as small and non-overlapping
convex regions. Human ratings of the objects with respect to three psychologi-
cally motivated shape features – namely, aspect ratio, line curvature, and
orientation – could be interpreted as linear directions in these spaces. Overall,
their analysis indicated that similarity spaces with three to five dimensions strike
a good balance between compactness and expressiveness. For instance, Figure 1b
shows that higher-dimensional spaces only marginally improve the correlation of
distances to dissimilarities. We will use their four-dimensional similarity space
as a target for our machine learning experiments.

Recently, Morgenstern et al. [49] have proposed a 22-dimensional similarity
space for shapes obtained via MDS from 109 computer vision features on a
dataset of 25,000 animal silhouettes. Predictions of their similarity space on novel
stimuli were highly correlated with human similarity ratings (r = 0.91), giving
an indirect psychological validation to their approach. Moreover, Morgenstern
et al. trained different shallow CNNs to map from original input images into
their shape space. This relates their work quite strongly to our current study. In
contrast to their work, we start from psychological data on complex line drawings
and consider more complex network architectures.

2 Image license CC BY-NC 4.0, source: http://clipartmag.com/cockatiel-drawing.

http://clipartmag.com/cockatiel-drawing
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2.3 Convolutional Neural Networks

Artificial neural networks (ANNs) consist of a large number of interconnected
units [48, Chapter 4]. Each unit computes a weighted sum of its inputs, which is
then transformed with a nonlinear activation function g(

∑
i wi · xi) (see Figure

1c). Popular choices for the activation function include the so-called Rectified
Linear Unit (ReLU, used for intermediate layers) g(z) = max(0, z) as well as
the sigmoid unit g(z) = 1

1+e−z (for binary classification output), the softmax

unit g(z)i = ezi∑
j
ezj

(for multi-class classification output), and the linear unit

g(z) = z (for regression output).

The trainable parameters of an ANN correspond to the weights wi of its con-
nections. They are estimated by minimizing a given loss function which measures
the network’s prediction error. Popular loss functions include the mean squared
error (which computes the average squared difference between regression out-
put and ground truth) and the cross-entropy loss (which measures the difference
between the probability distribution of the classification output and the ground
truth). This loss function is minimized through gradient descent : One computes
the derivative of the loss function with respect to each weight wi and then makes
small adjustments to the weights based on their derivatives. Instead of using the
aggregated prediction error over all data points, one usually estimates it from a
so-called mini-batch, i.e., a subset of examples [26, Chapter 8]. Training a neural
network then consists of iterating over the dataset, where the network’s weights
are updated based on a new mini-batch in each iteration. Usually, multiple epochs
(i.e., loops over the whole dataset) are needed until the optimization converges.

Instead of using the complete dataset for training the network, one usually
considers a split into three subsets: The training set is used to optimize the
parameters wi of the network, while the validation set is used to monitor its
performance on previously unseen examples. This can for instance be used for
early stopping, where the training procedure is terminated, once the performance
on the validation set stops improving. The test set is then used in the end to
judge the expected generalization performance of the network on novel inputs.

A final important aspect of training neural networks are regularization tech-
niques [26, Chapter 7], which are used to counter-act overfitting tendencies
(where the network memorizes all examples from the training set, but is un-
able to generalize to novel inputs from the validation or test set): This includes
adding a so-called weight decay term to the loss function, which penalizes large
weight values and is motivated by the observation that smaller weights often
lead to smoother decision behavior. Dropout is another popular regularization
technique, where on each training step a randomly chosen subset of neurons is
deactivated in order to increase the networks robustness.

With respect to computer vision tasks such as image classification, convolu-
tional neural networks (CNNs) are considered to be the most successful ANN
variant [26, Chapter 9]. They make use of so-called convolutional layers which
apply the same set of weights (represented as kernel K) at all locations (see Fig-
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Fig. 2. (a) Two-dimensional convolution with a 3× 3 kernel. (b) Combination of con-
volution and max pooling. (c) Combination of unpooling and convolution.

ure 2a). This and the relatively small size of the kernel (and thus the receptive
field of each unit) drastically reduces the number of connections between sub-
sequent layers. CNNs furthermore use so-called max pooling layers (see Figure
2b) to reduce the size of the image by replacing the output at a certain location
by the maximum of its local neighborhood. For a max pooling layer, one has to
specify both the pool width (i.e., the size of the area to aggregate over) and the
so-called stride (i.e., the step size between two neighboring centers of pooling).

Typical convolutional networks start from a very high-dimensional input
(namely, images) and reduce the representation size in multiple steps until a
fairly small representation is reached which can then be used for classification
through a softmax layer. However, in some settings one is also interested in the
opposite direction: Creating a high-dimensional image from a low-dimensional
hidden representation. For instance, autoencoders [26, Chapter 14] are an impor-
tant unsupervised neural network architecture and are commonly used for dimen-
sionality reduction and feature extraction. Autoencoders are typically trained on
the task of reconstructing their input at the output layer, using only a relatively
low-dimensional internal representation. They consist of an encoder (which com-
presses information) and a decoder (which reconstructs the original input).

For the encoder, a regular CNN can be used, whose max pooling layers, how-
ever, create a loss of information [26, Section 20.10.6]: In Figure 2b, we only keep
the maximum value for each 2×2 patch of the feature map. Since three out of the
four values are discarded completely, it is impossible to accurately reconstruct
them. In the decoder, one therefore needs to approximate the inverted pooling
function with so-called unpooling steps. In most cases, one simply replaces each
entry of the feature map by a block of size s × s, where the original value is
copied to the top left corner and all other entries of the block are set to zero [20]
(cf. Figure 2c). Using such an unpooling step followed by a convolution (which
is together often called an upconvolutional layer) can be seen as an approximate
inverse of computing a convolution and a subsequent pooling [20]. This allows
us to increase the representation size inside the decoder in order to reconstruct
the original input image from a small bottleneck representation.
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2.4 A Hybrid Approach

A popular way of obtaining a conceptual similarity space is based on dissimilar-
ity ratings [24], which are collected for a fixed set of stimuli in a psychological
experiment. They are then converted into a geometric representation of the stim-
ulus set by using MDS (cf. Section 2.2). The similarity spaces produced by MDS
do not readily generalize to unseen stimuli: Mapping a novel input into the sim-
ilarity space requires one to collect additional dissimilarity ratings and then to
re-run the MDS algorithm on the enlarged dissimilarity matrix [6]. Artificial
neural networks (ANNs) on the other hand are capable of generalizing beyond
their training examples, but are not necessarily psychologically grounded.

In our proposed hybrid approach [8], we therefore use MDS on human dissim-
ilarity ratings to ”initialize” the similarity space and ANNs to learn a mapping
from stimuli into this similarity space, where the stimulus-point mappings are
treated as labeled training instances for a regression task. In general, ANNs re-
quire large amounts of data to optimize their weights, but the number of stimuli
in a psychological study is necessarily small. We propose to resolve this dilemma
not only through data augmentation (i.e., by creating additional inputs through
minor distortions), but also by introducing an additional training objective (e.g.,
correctly classifying the given images into their respective classes). This addi-
tional training objective can also be optimized on additional stimuli that have
not been used in the psychological experiment. Using a secondary task with
additional training data constrains the network’s weights and can be seen as a
form of regularization. This approach has, for instance, successfully been used by
Sanders and Nosofsky [58, 59], who have fine tuned pretrained CNNs to predict
the MDS coordinates on a dataset of 360 rocks. In contrast to their work, we
focus on the single cognitive domain of shapes, use a considerably smaller set of
annotated inputs, and consider a larger variety of machine learning setups.

3 General Methods

In this section, we describe both our data augmentation strategy for increasing
the size and variability of our dataset (Section 3.1) and our general training and
evaluation scheme for the machine learning experiments (Section 3.2).

3.1 Data Augmentation

The dataset of line drawings used for the psychological study by Bechberger and
Scheibel [11] is limited to 60 individual stimuli. These stimuli are all annotated
with their respective coordinates in the target similarity space and are thus our
main source of information for learning the mapping task. Moreover, we used
70 additional line drawings which were not part of the psychological study by
Bechberger and Scheibel, but which use a similar drawing style. Most applica-
tions of convolutional neural networks focus on datasets of photographs such as
ImageNet [16]. In contrast to photographs, the line drawings considered in our
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experiments do not contain any texture or background, since they only show
a single object using black lines on white ground. Sketches have similar char-
acteristics, so we used the sketch datasets TU Berlin [21] and Sketchy [60] as
additional data sources. From the TU Berlin corpus, we used all 20,000 sketches,
while for the Sketchy corpus we selected a subset of 62,500 images by first keep-
ing only the sketches which had been labeled as correct by the authors and then
randomly selecting 500 sketches from each of the 125 categories. TU Berlin con-
tains 250 classes and Sketchy uses 125 classes, and both datasets overlap on a
subset of 98 common classes. We used the full set of 277 distinct classes when
training the network on its classification objective.

We used the following augmentation procedure to further increase the size of
our dataset and the variety of inputs: For each original image, we first applied a
horizontal flip with probability 0.5 and then rotated and sheared the image by
an angle of up to 15 degrees, respectively. In the resulting distorted image, we
identified the bounding box around the object and cropped the overall image to
the size of this bounding box. The resulting cropped image was then uniformly
rescaled such that its longer side had a randomly selected size between 168 and
224 pixels. Using a randomly chosen offset, the rescaled object was then put in
a 224 × 224 image, where remaining pixels were filled with white. We used a
uniform distribution over all possible resulting configurations for a given image,
which makes smaller object sizes more likely since they have more translation
possibilities than larger object sizes. Please note that we did not use the aug-
mentation steps of horizontal flips and random shears and rotations on the line
drawings from the psychological study, since the similarity space contains an
interpretable direction which reflects the orientation of the object.

For each line drawing (both from the psychological study and additional
ones), we created 2000 augmented versions, while the TU Berlin dataset and
Sketchy were augmented with factors of 12 and 4, respectively. Overall, we ob-
tained 120,000 data points for the line drawings from Bechberger and Scheibel,
140,000 data points for the additional line drawings, 240,000 data points for TU
Berlin, and 250,000 data points for Sketchy.

3.2 Training and Evaluation Scheme

Sketch-a-Net [68, 69] was the first CNN specifically designed for the task of
sketch recognition and is essentially a trimmed version of AlexNet [37], the first
CNN that achieved state of the art results in image classification tasks. For
our encoder network (see Figure 3), we used Sketch-a-Net and treated the size
of its second fully connected layer as a hyperparameter. Moreover, we did not
use dropout in this layer and used linear units instead of ReLUs to allow the
network to predict the MDS coordinates (which can also be negative) as part
of its learned representation. Classification was realized with a softmax layer on
top of the encoder (not shown). In the autoencoder setup, we additionally used
a decoder network inspired by the work of Dosovitskiy and Brox [19], which uses
two fully connected layers and 6 upconvolutional layers.
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Fig. 3. Structure of our CNNs (”64 conv 15 × 15 s3” = convolutional layer with 64
kernels of size 15 × 15, using a stride of 3, ”max pool” = max pooling layer, ”FC” =
fully connected layer, ”uconv” = upconvolutional layer; output image size shown next
to the layers).

We furthermore applied binary salt and pepper noise (which sets randomly
selected pixels to their minimal or maximal value) to the inputs before feeding
them to our network. This additional noise further increases the variety of the
network’s inputs and can be seen as an additional form of data augmentation.
We chose salt and pepper noise rather than Gaussian noise, since the former is
more adequate for our inputs, where most of the pixels are either black or white.

In our experiments reported below, we trained the overall network to mini-
mize a linear combination of the classification error (softmax cross-entropy for
the 277 classes), the reconstruction error (sigmoid cross-entropy loss with respect
to the uncorrupted images3) and the mapping error (mean squared error for the
target coordinates and the designated units of the second fully connected layer).

When evaluating the network’s overall performance, we used the following
evaluation metrics: For the classification task, we report separate classification
accuracies (i.e., percentages of correctly classified examples) for the TU Berlin
and the Sketchy datasets. For the reconstruction task, we report the reconstruc-
tion error (i.e., the binary cross-entropy loss) and for the mapping task, we report
the mean squared error (MSE), the coefficient of determination R2 (measuring
the fraction of variance in the data explained by the model), and the mean Eu-
clidean distance (MED) between the predicted point and the ground truth. We
only used salt and pepper noise during training, but not during evaluation in
order to avoid random fluctuations on the validation and test set.

Since the target coordinates used for learning and evaluating the mapping
task are based only on 60 original stimuli, we decided to follow a five-fold cross
validation scheme: We divided the original data points from each of the data
sources into five folds of equal size and then applied the augmentation step for

3 Since our autoencoder receives a corrupted image, but needs to reconstruct the
uncorrupted original, it is a so-called denoising autoencoder [67].
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each fold individually. Therefore, all augmented images that were based on the
same original data point are guaranteed to belong to the same fold, thus prevent-
ing potential information leaks between folds. In our overall evaluation process,
we rotated through these folds, always using three folds for training, one fold
for testing, and the remaining fold as a validation set for early stopping (i.e.,
choosing the epoch with the lowest loss). We ensured that each fold was used
once for testing, once as validation set, and three times as training set. The
reported numbers are always averaged across all folds. By using this five-fold
cross-validation technique, we implicitly trained five neural networks with the
same hyperparameter settings, but slightly different data. Our averaged results
therefore approximate the expected value of the neural network’s performance
on unseen inputs and hence the generalizability of the learned mapping.

During training, we used the Adam optimizer [36] as a variant of stochastic
gradient descent, with the initial learning rate set to 0.0001, the default param-
eter settings of β1 = 0.9, β2 = 0.999, ε = 10−8, and a mini-batch size of 128. We
ensured that each mini-batch contained examples from all relevant data sources
according to their relative proportions: When training only on the classification
task, we took 63 examples from TU Berlin and 65 from Sketchy. When training
on both the classification and the mapping task, we used 25 line drawings, 51
sketches from TU Berlin, and 52 examples from Sketchy. Whenever the recon-
struction task is involved, we used 21 line drawings, 24 additional line drawings,
41 examples from TU Berlin, and 42 data points from Sketchy. We always trained
the network for 200 full epochs and select the epoch with the lowest validation
set loss (classification loss or reconstruction loss for the pretraining experiments,
and mapping loss for the multi-task learning experiments) in order to compute
performance on the test set.

4 Experiments

In this section, we report the results of the experiments carried out with our
general setup as described in Section 3. With our experiments, we try to show
that learning a mapping from line drawings into the shape space of Bechberger
and Scheibel [9, 10, 11] is feasible. Moreover, we aim to investigate the influence
of different learning regimes on the network’s performance.

In Section 4.1, we train our network exclusively on the classification and
reconstruction task, respectively, in order to identify promising settings for its
various hyperparameters. This provides a starting point for our transfer learn-
ing experiments in Section 4.2, where we apply a linear regression on top of
the pretrained CNNs. This is the perhaps most straightforward approach to
solving the mapping problem. In Section 4.3, we then follow a more complex
multi-task learning approach, where both the mapping task and the secondary
objective (either classification or reconstruction) are optimized jointly. This is a
computationally more costly approach, which may however also provide supe-
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Table 1. Selected hyperparameter configurations for the classification-based and the
regression-based network, respectively.

Configuration
Encoder Decoder

Weight
Dropout

Noise Rep. Weight
Dropout

Decay Level Size Decay

Cdefault 0.0005 True 10% 512 – –

Csmall 0.0005 True 10% 256 – –

Ccorrelation 0.0010 False 10% 512 – –

Rdefault 0.0005 True 10% 512 0.0000 False

Rbest 0.0000 False 10% 512 0.0000 False

rior performance. Finally, in Section 4.4, we investigate how well the different
approaches generalize to target similarity spaces of varying dimensionality.

4.1 Pretraining

We first considered a default setup of the hyperparameters based directly on
Sketch-a-Net [68, 69] and AlexNet [37]: We used a weight decay of 0.0005,
dropout in the first fully connected layer, and a representation size of 512 neu-
rons in the second fully connected layer. Moreover, we used 10% salt and pepper
noise during training. For the decoder network, we used neither dropout nor
weight decay. As evaluation metrics for the classification task, we considered
the accuracies reached on TU Berlin and Sketchy, while for the autoencoder,
the reconstruction error was used. In both cases, we also computed the mono-
tone correlation of distances in the feature space to the dissimilarity ratings of
Bechberger and Scheibel [11], measured with Kendall’s τ [35]. Since a full grid
search on many candidate values per hyperparameter was computationally pro-
hibitive (especially in the context of a cross validation), we first identified up to
two promising settings for each hyperparameter for both network types, before
conducting a small grid search by considering all possible combinations of the
remaining values. The most promising configurations selected in this grid search
are shown in Table 1.

For the classifier network, the best classification performance (with accuracies
of 63.2% and 79.3% on TU Berlin and Sketchy, respectively) was obtained by our
default setup Cdefault. This is considerably lower than the 77.9% on TU Berlin
reported for the original Sketch-a-Net [68], which, however, used a much more
sophisticated data augmentation and pretraining scheme. A considerably higher
correlation of τ ≈ 0.33 (instead of τ ≈ 0.27 for Cdefault) to the dissimilarity
ratings could be obtained by disabling dropout and increasing the weight decay
(Ccorrelation), however, at the cost of considerably reduced classification
accuracies of 36.4% and 61.5% on TU Berlin and Sketchy, respectively. Since
reducing the representation size barely affected classification performance, we
also consider Csmall, which uses 256 units and otherwise default parameters.
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Table 2. Results of our experiments on the four-dimensional target space. The respec-
tive best values for each configuration are shown in boldface.

Configuration Task Regressor β/λ τ MSE MED R2

Any Any Zero Baseline – – 1.0000 0.9940 0.0000

Cdefault
Transfer

Linear – 0.2743 0.5567 0.6879 0.4409
Lasso 0.05 0.2743 0.4775 0.6419 0.5216

Multi-Task CNN 0.0625 0.4141 0.4041 0.5920 0.5775

Csmall
Transfer

Linear – 0.2777 0.5373 0.6737 0.4575
Lasso 0.02 0.2777 0.4737 0.6396 0.5246

Multi-Task CNN 0.125 0.4118 0.4182 0.6020 0.5567

Ccorrelation
Transfer

Linear – 0.3292 0.7307 0.7825 0.2624
Lasso 0.05 0.3292 0.5478 0.6815 0.4505

Multi-Task CNN 2.0 0.4534 0.4513 0.6115 0.5201

Rdefault
Transfer

Linear – 0.2228 0.9709 0.9054 0.0168
Lasso 0.02, 0.05 0.2228 0.8315 0.8739 0.1631

Multi-Task CNN 2.0 0.3533 0.6211 0.7297 0.3369

Rbest

Transfer
Linear – 0.3019 1.0791 0.9362 -0.0886
Lasso 0.02 0.3019 0.7376 0.8102 0.2605

Multi-Task CNN
0.25,

0.4033 0.5494 0.6846 0.4213
0.5, 2.0
0.0625 0.3893 0.5504 0.6851 0.4144

For the autoencoder, we observed that completely disabling both weight de-
cay and dropout in both the encoder and the decoder led to considerably im-
proved reconstruction performance (reconstruction error of 0.08 for Rbest in
comparison to 0.13 for Rdefault). Also the correlation to the dissimilarities
increased from τ ≈ 0.22 to τ ≈ 0.30. Manipulation of all other hyperparameters
did not lead to further improvements.

4.2 Transfer Learning

For our transfer learning task, we extracted the hidden representation of each
network configuration for each of the augmented line drawings. We trained a
linear regression from these feature spaces to the four-dimensional shape space
by Bechberger and Scheibel [11]. In addition to the linear regression, we also
consider a lasso regression (which introduces a weight decay term) with the
following settings for the regularization strength β:

β ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}

Table 2 contains the results of these regression experiments. As we can see,
the linear regression performs considerably better than the zero baseline (which
always predicts the origin of the target space) for the classification-based feature
spaces, but not for the reconstruction-based feature spaces. Moreover, regular-
ization helps to improve performance on all feature spaces. A lasso regression
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Table 3. Cluster analysis of the augmented images in the individual feature spaces
(averaged across all folds) using the Silhouette coefficient and the Cosine distance (i.e.,
the Cosine of the angle between the feature vectors).

Configuration Cdefault Csmall Ccorrelation Rdefault Rbest

0% Noise 0.6448 0.6347 0.5310 -0.0359 0.0818

10% Noise 0.6364 0.6263 0.5180 -0.0300 0.0768

on Csmall slightly outperforms Cdefault, hinting at an advantage of smaller
representation sizes. Ccorrelation does not yield competitive results, indicat-
ing that classification accuracy is a more useful selection criterion in pretraining
than the correlation to human dissimilarity ratings.

Overall, transfer learning based on classification networks seems to be much
more successful than transfer learning based on autoencoders, even when consid-
ering a lasso regressor. The reason for the relatively poor performance of Rbest
and Rdefault can be seen in Table 3, where we analyze how well the different
augmented versions of the shape stimuli from Bechberger and Scheibel [11] are
separated in the different feature spaces. We used the Silhouette coefficient [57],
where larger values indicate a clearer separation of clusters. As we can see, the
different augmented versions of the same original line drawing do not form any
notable clusters in the reconstruction-based feature space. On the other hand, a
relatively strong clustering can be observed for classification-based feature spaces
under both noise conditions, indicating that the network is able to successfully
filter out noise. We assume that this difference is based on the fact that the
autoencoder needs to preserve very detailed information about its input (both
local and global shape information) in order to create a faithful reconstruction,
while a classification network only needs to preserve pieces of information that
are highly indicative of class membership (rather global than local information).

4.3 Multi-Task Learning

In our multi-task learning experiments, we trained our networks in the different
configurations again from scratch, using, however, also the mapping loss as ad-
ditional training objective. Instead of a two-phase process as used in the transfer
learning setup, we therefore optimize both objectives at once. This allows the
network to adapt the weights of its lower layers such that its internal represen-
tation becomes more useful for the mapping task, but comes at considerably
higher computational cost. When training the networks, we varied the relative
weight λ of the mapping loss in order to explore different trade-offs between the
two tasks. We explored the following settings (where λ = 0.25 approximately
reflects the relative proportion of mapping examples in the classification task):

λ ∈ {0.0625, 0.125, 0.25, 0.5, 1.0, 2.0}

Table 2 also contains the results of our multi-task learning experiments. As
we can observe, mapping performance is considerably better in the multi-task
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setting than in the transfer learning setting for all of the configurations under
investigation. The best results are obtained for Cdefault, which is followed
closely by Csmall. Ccorrelation performs again considerably worse than the
other classification-based setups, although its best multi-task results are still su-
perior to all transfer learning results. Moreover, both reconstruction-based setups
are not able to close the performance gap to the classification-based networks
also under multi-task learning. These observations indicate that the multi-task
learning regime is more promising than the transfer learning approach and that
classification is a more helpful secondary task than reconstruction.

When taking a closer look at the optimal values for λ, we note that for
both the Cdefault and the Csmall setting, relatively small values of λ ∈
{0.0625, 0.125} have been selected. For the Ccorrelation configuration, how-
ever, a relatively large mapping weight of λ = 2.0 leads to the best mapping
results, indicating that this configuration requires stronger regularization than
others. Also for Rdefault, a relatively large mapping weight of λ = 2.0 yielded
the best performance, while no unique best setting for λ could be determined
for the Rbest configuration, where different metrics are optimized by different
hyperparameter settings – here, λ = 0.0625 provides a reasonable trade-off.

In all cases, the introduction of the mapping loss leads to a considerable in-
crease in the correlation τ to the dissimilarity ratings. This effect is, however, to
be expected, since the mapping loss tries to align a part of the internal repre-
sentation with the coordinates of the similarity space, which is explicitly based
on the psychological dissimilarity ratings.

4.4 Generalization to Other Target Spaces

So far, we have only considered a four-dimensional target space. In this section,
we investigate how well the different approaches generalize to target spaces of
different dimensionality. We considered the respective best setups for all com-
binations of classification-based vs. reconstruction-based networks and transfer
learning vs. multi-task learning (cf. Table 2) and retrained them (using the same
values of β/λ) on all other target spaces (one to ten dimensions) of Bechberger
and Scheibel [11], using again a five-fold cross validation.

Figure 4 illustrates the results of these generalization experiments for our
three evaluation metrics. Both transfer learning approaches reach their peak
performance for a two-dimensional target space, even though they have been
optimized on the four-dimensional similarity space. Only with respect to the
MED, performance is best on the one-dimensional target space. However, also the
MED of the zero baseline is smallest for a one-dimensional space. If we consider
the relative MED (by dividing through the MED of the zero baseline), then the
best performance is again obtained on a two-dimensional target space. In all
cases, classification-based transfer learning is clearly superior to reconstruction-
based transfer learning.

The multi-task learners on the other hand do not show such a uniform pat-
tern: While the reconstruction-based approach also obtains its optimum for a
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Fig. 4. Results of our generalization experiments to target spaces of different dimen-
sionality for MSE, MED, and R2.

two-dimensional target space, the classification-based multi-task learner seems
to prefer a four-dimensional target space. Moreover, both multi-task learners are
more sensitive to the dimensionality of the target space than the transfer learning
approaches: The classification-based multi-task learner considerably outperforms
all other approaches on medium- to high-dimensional target spaces, while falling
behind for a smaller number of dimensions. The reconstruction-based multi-task
learner on the other hand performs quite poorly on high-dimensional spaces while
becoming competitive on low-dimensional target spaces. Both multi-task learn-
ers use a mapping weight of λ = 0.0625, i.e., the smallest value we investigated.
However, the size of the classification and reconstruction loss differed consider-
ably, with a classification loss of around 1.3 to 1.6, compared to a reconstruction
loss of 0.10 to 0.12 (both measured on the test set). The relative influence of
the mapping objective on the overall optimization is thus considerably greater
in the classification-based multi-task learner. One may therefore speculate that
even smaller values of λ would have benefited the classification-based multi-task
learner for smaller target spaces.

Overall, the results of this generalization experiment confirm the effects re-
ported in our earlier study [8], where we also observed a performance sweet spot
for a two-dimensional target space in a transfer learning setting. Again, we can
argue that this strikes a balance between a clear semantic structure in the target
space and a small number of output variables to predict. The observed sensitiv-
ity of the multi-task learning approach indicates that the target space should be
carefully chosen before optimizing the multi-task learner.

5 Discussion and Conclusion

In this paper, we have aimed to learn a mapping from line drawings to their
corresponding coordinates in a psychological shape space. We have compared
classification-based networks to autoencoders, investigating both transfer learn-
ing and multi-task learning. Overall, classification seemed to be a better sec-
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ondary task than reconstruction, and multi-task learning consistently outper-
formed transfer learning. We found that the best performance in general was
reached for classification-based multi-task learning, but that this approach was
quite sensitive to the dimensionality of the target space. These results are mostly
not surprising, given that multi-task learning allows for a finer-grained trade-off
between tasks and that a reconstruction objective implicitly enforces also posi-
tion and size information to be encoded.

We can compare our results to our earlier study [8] on a dataset of novel
objects [29], where we used a lasso regression on top of a pretrained photograph-
based CNN. There, we achieved for a four-dimensional target space a MSE of
about 0.59, a MED of about 0.73, and a coefficient of determination of R2 ≈ 0.39.
These numbers are considerably worse than the ones obtained for classification-
based transfer learning (see Section 4.2), indicating that the shape space con-
sidered in the current study poses an easier regression problem. Moreover, we
can compare our performance with respect to the coefficient of determination
to the results reported by Sanders and Nosofsky [58], who reported a value of
R2 ≈ 0.77 for an eight-dimensional target space and a more complex network
architecture, using a dataset of 360 stimuli. Our best results with R2 ≈ 0.61
on a two-dimensional target space are considerably worse than this and clearly
not good enough for practical applications. We assume that performance in our
scenario is heavily constrained by the network size and the number of stimuli
for which dissimilarity ratings were collected. This urges for further experimen-
tation with more complex architectures, larger datasets, different augmentation
techniques, and additional regularization approaches.

Overall, our present study has illustrated that it is in principle possible to
predict the coordinates of a given input image in a psychological similarity space
for the shape domain. Although performance is not yet satisfactory, this is an
important step towards making conceptual spaces usable for cognitive AI sys-
tems. Once a robust mapping of reasonably high quality has been obtained,
one can use the full expressive power of the conceptual spaces framework: For
instance, the interpretable directions reported by Bechberger and Scheibel [11]
can give rise to an intuitive description of novel stimuli based on psychological
features. Also categorization based on conceptual regions, commonsense reason-
ing strategies, and concept combination can then be implemented on top of the
predicted coordinates in shape space (cf. Section 2.1).

The approach presented in this article can of course also be generalized to
other domains and datasets such as the THINGS data base and its associated
embeddings [28] or the recently published similarity ratings and embeddings
for a subset of ImageNet [55]. It can furthermore be seen as a contribution to
the currently emerging field of research which tries to align neural networks with
psychological models of cognition [1, 5, 6, 32, 38, 39, 49, 51, 52, 53, 58, 59, 64, 65].
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