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Abstract. Human memory systems are commonly divided into different
types of store, the most basic distinction being between short-term mem-
ory (STM) and long-term memory (LTM). Phonological STM, as pro-
posed in the working memory model is closely linked to semantic LTM.
Nevertheless, the mechanisms of maintenance with STM, and transfer
of information with LTM are poorly understood. Candidate mechanisms
within phonological STM are rehearsal (either articulatory or elabora-
tive), and refreshing. There is also evidence of long-term learning within
STM.

In this paper we use the Behavior and Reasoning Descriptive Language
(BRDL) to model human memory contents as well as the perceptions
that allow humans to input information into STM. By using the Maude
rewrite system to provide semantics to BRDL and dynamics to BRDL
models, we can explore various cognitive theories about phonological
STM maintenance and transfer of information for long-term retention,
such as articulatory rehearsal, elaborative rehearsal, and refreshing. This
approach has been implemented in a tool that allows cognitive scientists
to carry out in silico the simulation of learning processes as well as the
replication of experiments conducted with human beings in order to con-
trast alternative cognitive theories.

Keywords: Short-term memory · Working memory · Semantic mem-
ory · Behaviour and Reasoning Description Language (BRDL) · Formal
Methods
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1 Introduction

Most theories of human learning processes make a fundamental distinction be-
tween short-term memory (STM) and long-term memory (LTM). This distinc-
tion is supported by a wealth of evidence from neuropsychology, experimental
psychology, and analysis of the different computational needs of short-term and
long-term forms of information processing [30]. Although multiple models exist
of the interactions between STM and LTM, predominant is the Multicomponent
Working Memory Model proposed by Baddeley and Hitch [7].

In our paper, the expression working memory should thus be interpreted
as referring broadly to the model proposed by Baddeley and colleagues, unless
stated otherwise. In the most recent form of the Multicomponent Working Mem-
ory Model, the most basic feature distinguishing short-term processing is that
it is essentially fluid, while LTM is essentially crystalized [3, 4]. The concepts
of fluid and crystalized processing originated in studies of intelligence within
differential psychology [14].

Crystalized knowledge is viewed as stored information, and is thus highly
dependent on experiences, culture and education. In contrast, fluid processing
describes processes which work ‘online’ and are conducted to deal with novel,
current demands and are basically independent of cultural influences and educa-
tion. That working memory is fluid is almost tautological, as its very definition
includes, in addition to short-term storage of information, it “supports human
thought processes by providing an interface between perception, long-term mem-
ory and action” [4, p. 829]. Indeed, some argue that working memory is so in-
volved with high-level, domain-general cognitive processing that it is virtually
equivalent to general intelligence [21], and concordant with that, is a substantial
predictor of performance in formal education [35].

The most recent version of the Multicomponent Working Memory Model pro-
poses a singular top-down, executive, limited capacity processor, and two STM
stores. Visuospatial storage in STM, also known as the visuospatial sketchpad,
interacts with visual semantics stored in LTM, while an acoustic-based STM,
known as the phonological loop interacts with semantic LTM [3, 4].

In our paper we focus on the latter of these two, the phonological loop,
and how information is maintained (i.e., how it acts as an STM store) and
how information may be parsed with semantic LTM. In our own computational
modelling, we refer to this phonological store as pSTM, but we consider it more or
less equivalent to the phonological loop in the Multicomponent Working Memory
Model of Baddeley and Hitch [7] or the basic acoustic-based STM store in the
Atkinson and Shiffrin’s model [1].

Evidence that pSTM is closely linked to semantic LTM is known from various
sources. One being that pSTM in the context of working memory ability is
linked to normal vocabulary learning in children, and brain damage that impairs
pSTM in adults effectively prevents new vocabulary learning, but not episodic
LTM learning [6]. This suggests that pSTM is a crucial stage contributing to
crystalized semantic LTM. In support of the opposite connections, from LTM
to pSTM, the often quoted capacity of pSTM, seven plus or minus two items,
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is frequently disproven by prose recall [23] and chunking of verbal material [31].
Both of which suggest that semantic-lexical LTM can actively support pSTM,
allowing much more information to be held ready for immediate use.

In fact, a recent conceptualization of the position of working memory in the
greater memory system, proposes that while still basically separate, working
memory operates between LTM and action/output systems [5].

In Section 2 we review experimental studies on the pSTM processes (artic-
ulatory rehearsal, elaborative rehearsal, and refreshing) that enable information
to persist in the short-term storage and, possibly, move to LTM (Sections 2.1
and 2.2), and we introduce fast and slow learning mechanisms (Section 2.3). In
Section 3 we briefly recall the Behavior and Reasoning Descriptive Language
(BRDL), which was introduced in the first author’s previous work [15], and we
describe how to use it to model maintenance and learning mechanisms (Sec-
tion 3.1). In Section 4 we first review modelling approaches to the in silico
simulation of working memory, and then describe our own approach and tool,
which are based on our previous work [17, 16, 18], in which Real-Time Maude
[34] is used to provide semantics to BRDL and dynamics to BRDL models. In
particular, Section 4.1 describes the tool implementation and Section 4.2 illus-
trates the use of the tool for the in silico replication of the 1969 Collins and
Quillian’s experiment [20] on time retrieval from LTM and the 2017 Souza and
Oberauer’s experiment [37] comparing fast and slow learning mechanisms. Fi-
nally, in Section 5 we draw conclusions and discuss future work.

2 Maintenance in pSTM and Transfer to LTM

Despite wide-spread support for the concept of the Multicomponent Working
Memory Model, the mechanism by which material is maintained in STM (e.g.,
the phonological loop), is poorly understood. Furthermore, based on experimen-
tal evidence, it is argued that whatever the mechanisms are, they also seem to
contribute to information retention in LTM [26] Thus, working memory main-
tenance and LTM trace formation or strengthening are intertwined. Two main
mechanisms have been proposed for how information is maintained in pSTM,
given that it is supposedly of short duration, with memory traces decaying in
perhaps less than 3 seconds [13]. These are rehearsal and refreshing. Both have
also been proposed as mechanisms of how information transfers from STM to
LTM.

2.1 Rehearsal

As the phonological loop component of the Working Memory Model developed
from the earlier Modal Model of memory [1, 2], it inherited from that the concept
of rehearsal. This suggests that information decays rapidly within phonological
STM, unless it undergoes some form of repetition, hence the name, phonological
loop. This appears to take the form of sub-vocal articulation. As it is proposed
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as a trace enhancing mechanism, it is often called articulatory rehearsal. Nev-
ertheless, such rehearsal is also proposed as a principal mechanism by which
information moves from STM to LTM storage [2]. These are thus quite closely
related concepts, as information that is articulatory rehearsed (presumably in-
creasing the probability of transfer to LTM) also remains available in STM for
longer.

This has led to the suggestion that the length of time that information spends
in phonological STM determines its likelihood of transfer to LTM [1]. However,
experimental support for this, at least as caused by articulatory rehearsal, has
proven to be quite limited [38]. One suggestion is that the intentional act of
initiating articulatory rehearsal and the associated processes, such as preparing
the articulatory code, are the mechanism that cause some transfer to LTM, with
subsequent rehearsal loops maintaining information in STM, but not inducing
further transfer [29]. Recent evidence suggests that the amount of time that
information spends in phonological STM does indeed greatly influence whether
or not it will become available for later recall from LTM, but this may be due
to reasons other than greater opportunity for articulatory rehearsal, such as
elaboration [37].

As articulatory rehearsal appears to not explain much LTM learning, an
alternative version, elaborative rehearsal, has been proposed [28]. The expres-
sion is something of a misnomer, as it refers to processing of the meaning of
information with phonological STM. However it is interpreted, it is clear that
accessing meaning of material and making connections of meaning is a potent
mechanism of LTM learning. This is demonstrated in the classical experiments
used to form the Levels of Processing approach to human memory [22]. It is
now widely accepted that elaborative semantic rehearsal of information that is
held in phonological STM substantially increases the chance that the material
will be available from LTM when tested later, particularly if this is for linguistic
material [8].

2.2 Refreshing

An alternative mechanism for delaying trace decay in phonological STM is re-
freshing, which has become particularly popular within cognitive psychology
over the past two decades. It is defined in general terms as “a domain-general
maintenance mechanism that relies on attention to keep mental representations
active” [11, p. 19]. This is core to the Time-Based Resource-Sharing (TBRS)
model of working memory, which suggests that attention is a limited resource
which can maintain representations, but they will decay if attention is moved
to other tasks, unless it momentarily returns to refresh the traces [9]. This em-
phasizes the difference between the older Modal Model of STM and the more
current working memory models, in which some form of resource limited exec-
utive control is required, such as to sporadically refresh memory traces. This
executive resource produces a bottleneck as it is argued to work sequentially,
and thus must be switched frequently to maintain not only STM traces but also
various task goals, and other task-relevant information.
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Experimental evidence supports the existence of attentional refreshing as an
independent mechanism of maintenance of verbal material within STM. Further-
more, that it operates in addition to articulatory rehearsal, and that the two may
have an additive effect [12]. Several studies have suggested that in addition to
extending traces in STM, refreshing leads to better delayed recall, indicating it
promotes learning in LTM. For example, Loaiza and McCabe [27] used a word
learning task and found that articulatory rehearsal had no impact on later recall
from LTM, but opportunities for refreshing did. Nevertheless, a recent experi-
mental study that compared elaborative rehearsal and refreshing side-by-side,
found evidence that word learning in LTM is improved by the former, but not
by the latter [36]. The experimental evidence for LTM trace formation being
enhanced by refreshing in phonological STM is therefore unclear, as is whether
rehearsal can fulfil that function.

2.3 Fast and Slow Learning Mechanisms

It has been suggested that learning may take place within pSTM. This is implied
by the Hebb repetition effect [32] in which lists that are surreptitiously repeated
in immediate recall tasks are better recalled than novel lists, suggesting an inci-
dental STM learning mechanism. Burgess and Hitch [10], in their neural network
model of pSTM, implement a ‘fast mechanism’ responsible for storage of items
with pSTM for active use, and a ‘slow mechanism’ (e.g. long-term potentiation)
responsible for long-term learning that would form the LTM traces.

3 Behavioral and Reasoning Descriptive Language
(BRDL)

BRDL [15] is a modelling language to describe human reasoning and human
automatic and deliberate behavior. A BRDL model consists of a set of mental
representations of facts, inference rules and behavior patterns, classified as one
of the following types:

fact representation which is part of our knowledge, such as ‘An animal can
move’;

inference rule which is acquired through our lives and applied deliberately;
for example, when we are driving a car, we know that if we are approaching
a zebra crossing and we see pedestrians ready to walk across the road, then
we must to give way to the pedestrians;

deliberate basic activity which is driven by a goal; for example the activity
of grasping an object is driven by the goal of moving it to a specific place;

automatic basic activity which occurs as a reaction to perception from the
environment in combination with some mental state; for example the activity
of pushing the car brake may occur as a reaction to a red light while I am
in a driving mental state.
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The first three types of representation refer to information stored in the declar-
ative part of LTM. The use of this information by working memory processing
is driven by specific goals. Namely, we may retrieve a fact as the answer to a
question [16] or because we need to use it in the achievement of a goal [17]. The
retrieval of facts is modeled as an internal process of LTM. It operates through
a pattern matching between elements of some information stored in pSTM (i.e.,
a question or some information stored by the goal-driven task execution) and
elements of fact representations in LTM, possibly in combination with the iden-
tification of a semantic connection between the two matched elements of the
two information items. For example, if pSTM contains the question ‘Can a dog
bark?’, a full pattern matching with the fact ‘A dog can bark’ is directly iden-
tified in LTM (both ‘dog’ and ‘bark’ match). Instead, if the question is ‘Can
a dog move?’, two partial pattern matches with the facts ‘A dog is an animal’
(match on ‘dog’) and ‘An animal can move’ (match on ‘move’) are identified
in combination with the semantic connection between ‘dog’ and ‘animal’, which
expresses generalization.

An alternative possibility is that one of the information items involved in the
matching is actually stored in pSTM as a consequence of some working memory
activity. In this case, the semantic connection may be identified between a fact
in LTM and a fact in pSTM or even between two facts in pSTM. Representa-
tions of automatic activities are stored in the procedural part of LTM and are
not driven by goals. For example, the behavior of an experienced car driver is
mostly automatic: the driver is aware of the high-level tasks that are carried out,
but is not aware of low-level activities such as changing gear, using the indicator
and reacting to the presence of a traffic light or a zebra crossing. These low-level
activities are performed automatically as a direct response to specific percep-
tions whose selection is controlled by the information stored in STM, with no
involvement of actual reasoning activities. Thus, in this approach, attention is
modeled as an STM/working memory process [17].

3.1 Modelling Maintenance and Learning Mechanisms

Inspired by Burgess and Hitch’s ‘fast’ and ‘slow’ short-term learning processes
[10], we model articulatory rehearsal by associating each information item (or
chunk) stored in pSTM with a decay time and lifetime. The former is the re-
maining time after which the information item would be removed from STM
for natural decay, in the absence of any form of maintenance or reinforcement.
The latter is the entire lifetime of the item from the moment it is stored to the
moment it is removed.

The ‘fast’ short-term learning process is controlled by the decay time, while
the parallel ‘slow’ learning mechanism is represented by an increase in the in-
formation lifetime. Such an increase can be set in a way that can accommodate
a specific hypothesis or theory by using appropriate equations to define oper-
ator maintenance-effect. For example, we can model a small, constant increase
at each rehearsal loop or we may implement the suggestion by Naveh-Benjamin
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and Jonides [29] that the first rehearsal is the most important, because it in-
volves producing the articulatory plan, with subsequent loops of that plan within
pSTM adding little to the transfer to LTM.

Refreshing of an item in pSTM may be activated by questions which involve
the identification of semantic connections between facts in pSTM and facts in
LTM. For example, if we have just read the fact that ‘a dog is an animal’, which
we were unaware of, this fact is stored in pSTM but is not present in LTM. In
pSTM, the fact is associated with an initial decay time that equals the lifetime. If
we are then asked to answer the question ‘Can a dog move?’, we may actually use
the new fact to access the LTM fact that ‘an animal can move’ and find out that
also ‘a dog can move’. In our model this usage of the newly read fact in pSTM
increases its lifetime and resets its decay time to the value of the lifetime. Such
a process promotes learning by expanding the lifetime of facts in pSTM that
are used to access information in LTM. We also consider a lifetime threshold
for the transfer of information from pSTM to LTM, so that the repetition of
the refreshing process will eventually lead to a transfer of the fact from pSTM
to LTM, where it is finally stored permanently, thus completing the knowledge
acquisition process.

4 A Tool for Simulating Learning Processes and
Performing In Silico Experiments

Although the experimental evidence described in Sect. 2 has been greatly infor-
mative on elucidating the overall human memory system, other approaches are
available. One of these is producing various forms of in silico simulations, which
can then be tested in different circumstances, using hypotheses derived from
the experimental cognitive literature. For example, Oberauer and Lewandowsky
[33] have used a neural network approach to model their Time-Based Resource-
Sharing (TBRS) model approach to working memory, showing that it can pro-
duce many of the phenomena associated with human performance on experi-
mental tasks designed to assess working memory. In fact, a basic version of the
TBRS neural network implementation has been used to compare articulatory
rehearsal and refreshing mechanisms directly in pSTM, and reported that the
former performed substantially below the level of the latter as an STM trace
maintenance mechanism [25].

In this section we describe our own approach using formal modelling, which
we have implemented using the real-time extension of Maude [34]. Our ap-
proach supports the modeling of experiments in terms of sequences of perceptions
present in the environment with which the human memory model interacts. Each
perception is associated with a starting time and a duration. When the starting
time is reached the perception may be transferred to pSTM, depending on the
attentional mechanism controlled by the content of pSTM.

We use in silico experiments to compare alternative hypotheses and theories
that describe the transfer of information from pSTM to LTM through rehearsal
and refreshing. One way to carry out such a comparison is to determine and
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test alternative quantitative implementations of conceptual hypotheses or theo-
ries, as we proposed for the parallel learning mechanisms within pSTM proposed
by Burgess and Hitch [10] and for the Naveh-Benjamin and Jonides hypothesis
[29] about the initial articulatory plan for a rehearsal loop being the most im-
portant factor contributing to retention within LTM. Another approach is the
direct comparison of alternative estimates from cognitive psychology or neuro-
science. This is the case for pSTM decay time, and for inclusion of the time to
read a sentence, i.e., the initial conversion of the orthographical format into the
phonological format, estimated at about 100 msecs by Kolers [24].

Furthermore, the results of in silico experiments may also be compared with
real datasets to evince which model best mimics reality. In addition to a manual
comparison, we can use the methodology defined in our previous work [19] in
order to formally validate hypothesis, automatically converting a dataset into a
formal representation that can be composed in parallel with our human memory
model. Finally, from a computer science perspective, the human memory model
of a user can be combined with the model of the computer system or application
in order to analyze properties of the interaction, such as usability, learnability
and safety.

4.1 Tool Implementation

The purpose of our tool is to perform in silico experiments that allow researchers
to compare and analyse hypothesis and theories related to human memory. Users
of the tool are able to automatically generate a formal model of the human com-
ponent and analyse the overall system by performing simulation and checking
properties.

The tool can be downloaded from a GitHub repository3. It is equipped with
a simple and concise interface which was implemented using the Python GUI
framework, an MySQL database, and the Maude rewrite system. The tool inter-
face allows the researcher to model human memory in a BRDL-like fashion and
the resultant model is automatically translated into a formal model expressed
using Real-Time Maude. The tool allows for the adjustment of memory param-
eters before running experiments. The results of the in silico experiments are
then visualised by the tool by appropriately changing the content of the human
memory model.

The tool supports project and version control to make the user’s experience
friendly, reliable and maintainable. The user can create a project with a number
of versions to compare the results of different in silico experiments, using var-
ious combinations of the parameters of the memory. The project page (Fig. 1)
represents a simplified simulation of human memory.

This main project page allows the researcher to define a model of human
memory by entering the contents in the various memory components. Episodic
memory and sensory memory are not implemented in the current version of
the tool. However, sensory memory is implicitly given by the presence of timed

3 https://github.com/nuraynab/interactive-system-modelling
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Fig. 1. Project main page.

perceptions in the environment. The timing may be actually used to characterise
the duration of the perception in sensory memory. BRDL fact representations,
inference rules and deliberate basic activities are stored in semantic memory,
while automatic basic activities are stored in procedural memory. Normally, the
short-term memory is initially empty, but several parameters can be set by the
experimenter: STM capacity and cognitive load (a load due to other tasks, which
are not explicitly modeled) as well as information initial lifetime and its increase
due to the information persistence in pSTM.

Experiments are timed sequences of facts and/or questions, which in a real
experimental setting with human subjects may appear on a screen for a given
duration at given time intervals. These timings are set by the user before running
the experiment. As can be seen from the buttons in Fig. 1, the tool can run two
kinds of experiments, that is, two functionalities: a ‘proper’ experiment or a
learning process.

A ‘proper’ experiment may be a timed sequence of questions that are gener-
ated in the environment, are perceived and then enable a memory process that
retrieves information from the semantic memory in order to produce the answer
in STM and then transfer it to the environment. Another form of ‘proper’ exper-
iment may be a timed sequence of generic perception that the ‘virtual’ subject
has to rehearse. The experiment functionality can be used to study information
retrieval from semantic memory and maintenance rehearsal in pSTM.

A learning process normally occurs over a long period of time, which can
seldom be incorporated within any real experiment with human subjects. Here
the ‘experiment’ is a timed sequence of facts and questions that are generated
in the environment, are perceived, and then enable a number of memory pro-
cesses, including retrieval of information from the semantic memory, inferences,
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automatic action performance, deliberate action planning and performance, and
transfer of information from short-term memory to semantic memory. The learn-
ing process functionality allows users to investigate various forms of rehearsal,
such as elaborative rehearsal and refreshing.

4.2 Illustrative In Silico Experiments

In order to illustrate the use of our tool, we consider two experiments from the
cognitive science literature.

Collins and Quillian’s Experiment The first experiment is a classic in cog-
nitive science. It was carried out by Collins and Quillian [20] in 1969 to show
that the time to retrieve information from LTM is proportional to how far we
need to navigate the LTM network to find the requested information. In fact, the
results of this experiment supported the definition of the hierarchically organised
memory model, still largely accepted nowadays.

Fig. 2. Initial setting in the in silico replication of Collins and Quillian’s experiment.

In this experiment, the semantic memory model consists of three domains
“Animals”, “Birds”, and “Fish”. Collins and Quillian’s hypothesis was that in-
stead of saving the fact “Shark can swim” in the model it is more memory
efficient to retrieve this data from the category relation, in particular from the
facts that shark is a fish and a fish can swim. However, in this way, the time to
retrieve the fact from the hierarchical model will be longer than if it had stored
and retrieved it directly from semantic memory. Therefore, they concluded that
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the deeper the information in semantic memory the longer it will take time to re-
trieve it. This works under the assumption that it takes an equal amount of time
to get the fact from a single node regardless of its level. Collins and Quillian’s
experiments produced results in accordance with their hypothesis.

To replicate this experiment in silico, we create a semantic memory with 24
facts about animals, birds and fish, using, for sake of simplicity, the same retrieval
time of one unit. The initial setting of the experiment is shown in Fig. 2. The
experiment component includes 34 questions, each available for 2 seconds. After
running the experiments, 28 questions resulted answered, as shown in Fig. 3. Not

Fig. 3. Results for the in silico replication of Collins and Quillian’s experiment.

all the questions were answered due to pSTM limited capacity and information
decay time.

Answers that could fully match the questions could be retrieved directly, thus
requiring only one time units. For example, fact 8 “A bird is an animal” in Fig. 2
fully matches question 11 “Is a bird an animal?” in Fig. 3.

Instead, question 28 “Can a shark breathe?” in Fig. 3 is not fully matched
by any fact representation. Answering the questions requires claiming the fact
hierarchy in semantic memory (Fig. 2):

1. first matching “shark” with fact 24 “A shark is a fish”;
2. then matching “fish” with fact 18 “A fish is an animal”;
3. finally matching “animal” with fact 18 “An animal can breathe”;

For this reason answer 28 in Fig. 3 is found in 3 time units.

Souza and Oberauer’s Experiment The second experiment was carried out
by Souza and Oberauer [37] in 2017 to show that it is the total time duration
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that information spends in pSTM that influences whether or not it becomes
represented in LTM. In their experiments, they used slower versus faster pre-
sentation of information. Slower presentation allows information to stay in STM
for longer periods. In fact, slower presented information was found to be more
likely to transfer to LTM.

For this experiment, which is the in silico emulation of a learning process
occurring over a long time, the semantic memory only contains the four facts
in the table labelled “Original” in both Fig. 4 and Fig. 5. The same human

Fig. 4. Original and Final (Current) content of semantic memory for the in silico
replication of Souza and Oberauer’s experiment.

memory model underwent two experiments. Also the facts and questions in the
experiment setup were the same. However, the persistence time of the perceptions
were different.

To simulate fast learning facts and questions were presented every 2 time
units, whereas to simulate slow learning they were presented every 10 time units.
As shown in the tables labelled “Current” in Fig. 4 and 5, semantic memory con-
tains 15 facts in the case of fast learning (Fig. 4) and 22 facts in the case of slow
learning (Fig. 5), which is consistent with Souza and Oberauer’s experimental re-
sults [37] and Burgess and Hitch’s neural network model [10] where slow learning
is more effective than fast learning.

5 Conclusion and Future Work

In this paper we presented an approach and tool for the simulations and analysis
of memory processes and learning mechanisms underlying pSTM maintenance
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Fig. 5. Original and Final (Current) content of semantic memory for the in silico
replication of Souza and Oberauer’s experiment.

and transfer of information to LTM. We built up on our previous work by using
BRDL [15] to model the human memory content, and its Real-Time Maude
implementation [17, 16, 18] to provide dynamics to BRDL models. With respect
to our previous work we extended the Maude implementation with the timing
infrastructure to support the modelling of fast and slow learning mechanisms.
We tested our approach by comparing the outcome of our in silico simulation
with Souza and Oberauer’s experimental results [37].

Moreover, the tool addresses cognitive scientists, who are obviously not famil-
iar with formal methods and would have difficulty in using Maude directly as the
modelling language. By using the tool interface they can replicate in silico their
experiments with human subjects and contrast their experimental results with
various human memory models. This approach can provide a form of empirical
validation for a number of cognitive models.

In our future work, we are planning to generalise the scope of the tool by
combining the human memory component with the model of an interacting com-
puter/physical system. Such an overall model could be formally verified using
Real-time Maude model-checking features. Furthermore, we plan to have a web-
based version of this generalised tool and equip it with features for supporting
remote collaboration among research teams.
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