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Abstract. Fitch’s Paradox and the Paradox of the Knower both make
use of the Factivity Principle. The latter also makes use of a second
principle, namely the Knowledge-of-Factivity Principle. Both the prin-
ciple of factivity and the knowledge thereof have been the subject of
various discussions, often in conjunction with a third principle known as
Closure. In this paper, we examine the well-known Surprise Examina-
tion paradox considering both the principles on which this paradox rests
and some formal characterisations of the surprise notion, crucial in this
paradox. Standard formalizations of the Surprise Examination paradox
in modal logic do not seem, at first glance, to depend on either factiv-
ity or knowledge-of-factivity, but we will argue that both factivity and
knowledge-of-factivity play a key implicit role in the paradox. Namely,
they are implicitly, perhaps unintentionally, used in order to simplify the
definition of surprise. We analyze modal logical formalizations of three
versions of the paradox concluding that the Surprise Examination para-
dox is the result of two flaws: the assumption of knowledge-of-factivity,
and the over-simplification of the definition of “surprise” accordingly. By
fixing these two flaws, the Surprise Examination paradox vanishes.

1 Introduction

Many epistemic paradoxes are based on the Factivity Principle, which says that
if p is known, then p is true. For example, Fitch’s Paradox and the Paradox
of the Knower both make use of this principle. The latter also makes use of a
second principle, namely: it is known that if p is known then p is true. We call
this second principle Knowledge-of-factivity. Both the principle of factivity and
the knowledge thereof have been the subject of various discussions [21], often in
conjunction with a third principle known as Closure, i.e., if C is provable from a
set of premises, and those premises are known, then C is known [15]. In this pa-
per, we examine the well-known Surprise Examination paradox (see for example
[13, 16, 10, 6, 20, 8] for thorough surveys of the literature on this paradox). Stan-
dard formalizations of this paradox in modal logic do not seem, at first glance,
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to depend on either factivity or knowledge-of-factivity, however both principles
play a key implicit role in the paradox.1 Namely, they are implicitly, perhaps
unintentionally, used in order to simplify the definition of the core notion of
surprise. In standard modal logical formalizations of the paradox, students are
said to be “surprised” if and only if, just prior to the occurrence of the weekly
surprise exam, the students do not know that the exam will occur that day.
Certainly this is a sufficient condition for the students to be surprised, but we
argue it should not (at least by the students) be considered a necessary condi-
tion. We argue the students’ definition of surprise should also include another
disjunct: if the surprise exam occurs on day n and, just prior to its occurrence,
the students know that the surprise exam will occur on day m (where m > n),
this also should count as an instance of surprise. Such a situation is impossible
assuming factivity, and thus, if we (consciously or unconsciously) assume the stu-
dents know their own factivity, then the students know the additional disjunct is
false; this seemingly justifies the simpler definition of surprise. We will analyze
modal logical formalizations of three versions of the paradox. The first (stan-
dard) version uses the simplified definition of surprise, and a contradiction is
achieved even without assuming factivity or knowledge-of-factivity. The second
version uses the modified definition of surprise, and a contradiction is achieved
assuming both factivity and knowledge-of-factivity. The third version uses the
modified definition of surprise, and it assumes factivity, but it only assumes a
weaker form of knowledge-of-factivity, namely, that on each day, the students
know that they were factive on all earlier days. By constructing a model, we
prove that (if the school week has at least 3 days) this third formalization does
not lead to a contradiction. Thus in our opinion the Surprise Examination para-
dox is the result of two flaws: the assumption of knowledge-of-factivity, and the
over-simplification of the definition of “surprise” accordingly. By fixing these two
flaws, the Surprise Examination paradox vanishes.

The rest of the paper is organized as follows: in Section 2 we introduce the
Surprise Examination paradox. In Section 3 we describe a standard modal logic
formalization of the paradox in which a contradiction is achieved. In Section 4 we
introduce a version of the paradox with surprise re-defined, in which case a con-
tradiction is achieved as well if we assume factivity and knowledge of factivity.
In Section 5, we discuss a new resolution to the paradox. We show that by re-
defining surprise as in the previous section and weakening knowledge-of-factivity
(while still requiring factivity), the Surprise Examination paradox disappears.
In Section 6, we address whether knowledge-of-factivity should be assumed. We
conclude with remarks on the obtained results and possible future work.

2 Surprise Examination paradox

The paradox discussed in this article has many names and many variants, namely
the unexpected hanging, the unexpected tiger, the prediction paradox, etc., and

1 See also [13] and [21].



Knowledge-of-factivity and the Surprise Examination paradox 3

although it has often been underestimated as a topic, many scholars have de-
voted attention to it by exploring its possible solutions and/or criticality. So
correctly Michael Scriven [19] wrote “a new and powerful paradox has come to
light”. The paradox was first circulated by word of mouth in the early 1940’s and
today PhilPapers has more than 1000 articles on this topic. The more common
version of the surprise examination paradox goes as follows:

A teacher announces that there will be a surprise exam next week. The stu-
dents reason that the exam cannot occur on Friday (the final day of the school
week), because if it did, they would already know by then (by process of elimi-
nation) that it must be Friday, and thus it would not be surprising. Having ruled
out Friday, Thursday is then the last day on which the exam can possibly occur.
By the exact same reasoning, then, the exam cannot be on Thursday, because
if it were, they would already know by then (by process of elimination) that it
must be Thursday (since they have ruled out Friday already). In similar manner,
the examination cannot occur on Wednesday, Tuesday, or Monday. The students
conclude that the exam cannot occur at all. They are therefore quite surprised
when the teacher gives them the exam anyway.

As John Earman remarked [8] there are three mutually reinforcing reasons
for the longevity of the surprise exam paradox:

One is that the paradox resonates with a number of other paradoxes
including the liar, sorities, Moore’s paradox, the lottery paradox. Sec-
ond, the surprise exam is a kind of Rorschach test for philosophy. Logi-
cians see it is an opportunity to display their wares —including Gödel’s
incompleteness theorems (e.g. Ardeshir and Ramezanian 2012, Chow
1998, Fitch 1964, Halpern and Moses 1968, and Kritchman and Raz
2010). Epistemologists see it as an opportunity to explore the concepts
of knowledge and justified belief (e.g. Sorensen 1982, 1984, 1988, and
2017). Still others see it as a hybrid of logical and epistemological issues
(e.g. Kaplan and Montague 1960). Third, the variety of reactions to this
Rorschach test is fueled by the fact that the surprise exam announcement
is a misnomer: there are multiple ways of reading the announcement, and
the resulting paradoxes, if any, call for resolutions that may differ from
reading to reading.

In the following, we will analyze three epistemic modal logic formalizations of
the paradox and consider the role that the assumptions of factivity and knowl-
edge of factivity play in these reformulations.

3 The Surprise Examination paradox in modal logic

In this paper we consider a simple propositional epistemic logic to formalize
the Surprise Examination paradox, because its schematic characterization of
knowledge and its logical machinery allow us to tackle clearly the issues raised by
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the paradox and, in particular, those related to the properties of (ideal) knowers.
The paradox is set out in such a formal setting in several works, see for example
[5, 17, 11, 18]. In particular, we introduce propositional variables D1, . . . , Dn for
the n days of the school week, each Di being thought of as the exam takes
place on day i. Moreover, in order to take into proper consideration the dynamic
nature of the paradox, we use a notion of knowledge related explicitly to time
and occurences of subsequent events.

Generalized and more expressive forms of knowledge are obtained by en-
riching the classical modal operator K with parameters expressing, e.g., the
agent or the instant of time under consideration when evaluating knowledge of
a given formula [4]. In our setting, it is particularly convenient to reason about
the knowledge of students at specific days. Thus, we consider a formalization
of knowledge in which the epistemic operator K is indexed. While in the tradi-
tion of epistemic logic Ki refers to what agent i knows, in this paper we let the
modal operator Ki denote the knowledge of the subjects at the time of event
ei. In particular, in our setting Ki(ϕ) is going to be read as: “ϕ is known by
the students at midnight just before day i”. Such an interpretation is adopted
similarly in [17, 18]. Thus, for example, the formula D2 → K2(¬D1) might be
read: On midnight just before day 2, if the exam is on such a day, the students
know that the exam was not on day 1.

When dealing with agents and time it is worth setting some assumptions that
justify the properties of our family of epistemic operators (we refer to [9] for an
overview of the following considerations).

The propositions (and formulas) that we use to describe our problem are
stable, so that their truth values do not change over time.

Moreover, our formal system is not explicitly multi-agent. This means that
we will not model the teacher and each student as separate entities. On one
hand, the truth values of the propositions Di will express the teacher’s decision.
To this aim, we assume that the teacher is not a liar when announcing that there
will be a (unique) surprise exam next week. On the other hand, the classroom
of students is considered as the unique entity to which the knowledge operators
refer. In other words, Ki(ϕ) expresses that the whole classroom of students know
ϕ at the time of event ei. By the way, such an assumption implies that our system
is synchronous: time (and hence the passage of time) is common knowledge, i.e.,
all the students have somehow access to a shared clock and their knowledge is
aligned.

As another assumption, the students are perfect recall agents. Their knowl-
edge might grow over time to reflect that new knowledge can be acquired, while
still keeping track of old knowledge. To clarify, it is reasonable to assume that
the students do not forget what happened in the previous days of the week.

Based on such assumptions, we are now ready to discuss intuitively the most
important properties that we consider when formalizing the Surprise Examina-
tion paradox. This is typically done by stating a list of axioms, all of which
seem quite plausible based on the scenario of a teacher announcing a surprise
examination.
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We start with the formalization of “surprise”. The fact that the exam will be
a surprise will be modeled by the disjunction

∨
i(Di ∧ ¬Ki(Di)). Therefore, for

some i the following is true: the exam occurs on day i but the students do not
know (at midnight before the exam) that the exam occurs on that day. Certainly,
if this is true, then we should consider the students to be surprised. For example,
if D3 ∧ ¬K3(D3) holds, then that means the exam is on day 3, but at midnight
before day 3, the students do not know the exam is on day 3.

The fact that there will be an exam can be captured by the axiom
∨

iDi,
while the fact that the exam will only fall on one unique day is captured by∧

i<j ¬(Di ∧Dj). These two axioms, together, express that the teacher is not a
liar.

The stability and perfect recall assumptions allow us to state two more prop-
erties concerning knowledge. On the one hand, the fact that as days go with-
out the exam taking place the students refine their knowledge, is captured by∧

i((¬Di) → Ki+1(¬Di)). On the other hand, the fact that the acquired knowl-
edge is not forgotten is captured by Ki(ϕ) → Kj(ϕ) for j > i (this is also called
the retention principle [17, 18]).

In addition to these properties, which are specific to the given problem, we
will also assume a minimum set of standard properties of knowledge that will be
used in the proofs, like, e.g., the fact that knowledge is closed under implication.
However, we will exclude a property that has always been controversial in the
history of the paradox, that is the KK principle, stating that if the students
know ϕ, then they know that they know ϕ. We will show that the paradox arises
even in the absence of such a general condition of positive introspection, contrary
to [17, 22] and other authors who argued that KK was the cause of the paradox
(see also [18]).

But before introducing the formal system, let us consider the definition of
surprise more closely. We argued that

∨
i(Di ∧ ¬Ki(Di)) seems to imply sur-

prise. What about the converse? Are there any other ways the students could be
surprised, not included in this disjunction? It seems to us that there is another
way the students could be surprised. If the students know the exam will be on
Friday, they will be very surprised indeed if the exam is on Thursday. Thus,
a more inclusive definition for surprise would be as follows. The students are
surprised if the disjunction∨

i

(Di ∧ ¬Ki(Di)) ∨
∨
i<j

(Di ∧Ki(Dj))

holds. But is the second disjunct above even possible? Knowledge is supposed to
be factive, in other words, truthful. If the students know the exam is on Friday,
then the exam cannot be on Thursday—that would violate the truthfulness
of the students’ knowledge. Since knowledge is factive, the two definitions of
surprise are equivalent. However, there remains a much deeper question. We
ourselves, as outside observers, know that knowledge is factive and therefore
that the two definitions of surprise are equivalent. But do the students themselves
know that? We should neither assume the students know the two definitions are
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equivalent, nor that they know themselves to be factive. We discuss this more in
Section 6, but in short: the students cannot predict the teacher won’t announce
contradictions in future, thus to them, Ki should be thought of as a “provable-
from-teacher” (not a “knowledge”) operator. If we know the teacher is truthful,
then we know that said provability is in fact knowledge (hence our choice of the
letter K), but that doesn’t imply the students know that.

We will show that by redefining surprise in the above way, and weakening
knowledge-of-factivity (while still requiring factivity), the Surprise Examination
paradox disappears.

In the next section we will specify the details of the semantics we use in
this paper, but in short, we use propositional semantics, treating purely-modal
formulas Ki(ϕ) like propositional atoms.

3.1 Formalizing the paradox

Based on the motivations and intuitions surveyed above, we will state a theory
containing formalized versions of the assumptions of the Surprise Examination
paradox. But first, we will define the logic we are using.

Definition 1. We work in the language L consisting of propositional atoms
D1, D2, . . . and modal operators K1,K2, . . ., whose syntax and semantics are as
follows.

– Formulas of L are defined by induction as follows:
1. Every Di (i = 1, 2, . . .) is a formula.
2. For every formula ϕ and every i = 1, 2, . . ., Ki(ϕ) is a formula.
3. Whenever ϕ and ψ are formulas, so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ→ ψ.

– By the basic formulas of L we mean formulas of the form Di or Ki(ϕ).
– By a model we mean an assignment of truth-values to the basic formulas of

L .
– If M is a model and ϕ is a formula, we define the truth-value of ϕ in M ,

writing M |= ϕ if that truth-value is True or M ̸|= ϕ if that truth-value is
False, as follows:
1. If ϕ is a basic formula of L then M |= ϕ iff M assigns truth value True

to ϕ.
2. M |= ¬ϕ iff M ̸|= ϕ.
3. M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ.
4. M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ.
5. M |= ϕ→ ψ iff M ̸|= ϕ or M |= ψ.

– A theory is a set of formulas.
– For any model M and theory T , M |= T means M |= ϕ for all ϕ ∈ T .
– A theory T is consistent if there is some model M such that M |= T ;

otherwise T is inconsistent.
– For any theory T and formula ϕ, T |= ϕ means that for every model M , if

M |= T then M |= ϕ.
– For any theories T1, T2, T1 |= T2 means T1 |= ϕ for all ϕ ∈ T2.
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– A tautology is a formula ϕ such that ∅ |= ϕ.

Thus, e.g., K1(D1) → K1(D1) is a tautology, but K1(D1 → D1) is not.
Since our semantics are propositional, we have the usual completeness result

for propositional logic, namely:

Lemma 1. (Completeness) For any theory T and any formula ϕ, T |= ϕ if and
only if there exist finitely many ϕ1, . . . , ϕn ∈ T such that ϕ1 → · · · → ϕn → ϕ is
a tautology.

We also make use of shorthands such as
∧n

i=1Di for D1 ∧ · · · ∧Dn,
∨n

i=1 ϕi
for ϕ1 ∨ · · · ∨ ϕn, and so on. These are not new symbols in L , they are simply
meta-symbols. In every case, it will be clear what the actual L -formulas denoted
by them are.

The following theory is intended to capture the standard assumptions in the
Surprise Examination paradox (for a week with n school-days).

Definition 2. For each n ≥ 1, let Tn be the theory consisting of:

– (An
1 )

∨n
i=1Di.

– (An
2 )

∧
1≤i<j≤n ¬(Di ∧Dj).

– (An
3 )

∨n
i=1(Di ∧ ¬Ki(Di)).

– (An
4 )

∧n−1
i=1 ((¬Di) → Ki+1(¬Di)).

– (An
5 ) Ki(ϕ) for all 1 ≤ i ≤ n and tautologies ϕ.

– (An
6 ) Ki(ϕ→ ψ) → Ki(ϕ) → Ki(ψ) for all 1 ≤ i ≤ n and all ϕ, ψ.

– (An
7 ) Ki(ϕ) → Kj(ϕ) for all 1 ≤ i < j ≤ n.

– (An
∞) Ki(ϕ) for all 1 ≤ i ≤ n and all ϕ such that Tn |= ϕ.

As previously stated informally, An
1 and An

2 express the truthfulness of the an-
nouncement made by the teacher, An

3 formalizes the idea of surprise, An
4 and An

7

express properties of knowledge that hold by virtue of the stability and perfect
recall assumptions. Moreover, we have three more axioms expressing standard
properties of knowledge: An

5 formalizes the necessitation principle (all tautolo-
gies are known), An

6 states that knowledge is closed under logical consequence,
and An

∞ is the classical closure axiom expressing that what can be derived is
also known [15], [7]. In the following, after a preliminary Lemma, we prove the
contradiction underlying the paradox.

Lemma 2. (Closure Lemma) Let n ≥ 1, 1 ≤ i ≤ n. Suppose T is any L -theory
such that:

– T includes An
5 and An

6 .
– T includes Ki(ϕ) whenever T includes ϕ.

Then:

(1) For any ϕ, if T |= ϕ, then T |= Ki(ϕ).
(2) For any ϕ1, . . . , ϕℓ and ϕ, if ϕ1 → · · · → ϕℓ → ϕ is a tautology, and if

Tn |= ϕj for all 1 ≤ j ≤ ℓ, then Tn |= Ki(ϕ).
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Proof. (1) Assume T |= ϕ. Then there are finitely many ϕ1, . . . , ϕℓ ∈ T such
that ϕ1 → · · · → ϕℓ → ϕ is a tautology. By An

5 ,

T |= Ki(ϕ1 → · · · → ϕℓ → ϕ).

By repeated application of An
6 ,

T |= Ki(ϕ1) → · · · → Ki(ϕℓ) → Ki(ϕ).

By assumption, since T contains ϕ1, . . . , ϕℓ, T contains Ki(ϕ1), . . . ,Ki(ϕℓ). Thus
T |= Ki(ϕ).

(2) Since Tn |= ϕj for all 1 ≤ j ≤ ℓ, by (1) we see Tn |= Ki(ϕj) for all
1 ≤ j ≤ ℓ. The rest of the proof is similar to the proof of (1). ⊓⊔

Theorem 1. (The Surprise Examination paradox) For any n ≥ 1, Tn is incon-
sistent.

Proof. By induction on n. The base case n = 1 is trivial because A1
1 ≡ D1, thus

A1
∞ includes K1(D1), and A

1
3 ≡ D1 → ¬K1(D1).

Assume n > 1.
Preliminary claim: Tn |= ¬Dn. To see this, we reason within Tn as follows:

– Assume Dn.
– From An

2 it follows that (¬D1) ∧ · · · ∧ (¬Dn−1).
– From An

4 it follows that K2(¬D1) ∧ · · · ∧Kn(¬Dn−1).
– From An

7 it follows that Kn(¬D1) ∧ · · · ∧Kn(¬Dn−1).
– By An

5 , Kn((
∨n

i=1Di)) → ¬D1 → · · · → ¬Dn−1 → Dn).
– By repeated usages ofAn

6 , it follows from the previous bullet thatKn(
∨n

i=1Di) →
Kn(¬D1) → · · · → Kn(¬Dn−1) → Kn(Dn).

– By An
∞ and An

1 , it follows that Kn(
∨n

i=1Di).
– From the previous four bullets it follows that Kn(Dn).
– By An

3 ,
∨n

i=1(Di ∧ ¬Ki(Di)).
– Since (¬D1) ∧ · · · ∧ (¬Dn−1), the previous bullet implies ¬Kn(Dn).
– Contradiction. Discharge assumption and conclude ¬Dn.

This proves the preliminary claim.
To finish the proof, it will suffice to show Tn |= Tn−1, since Tn−1 is inconsis-

tent by induction. For this, it suffices to prove that whenever Tn−1 |= ϕ, then
Tn |= ϕ. We prove this by induction on the number of applications of An−1

∞
needed to prove Tn−1 |= ϕ.

Case An−1
1 : ϕ is

∨n−1
i=1 Di. Then Tn |= ϕ by An

1 plus the preliminary claim.
Case An−1

2 : ϕ is
∧

1≤i<j≤n−1 ¬(Di ∧Dj). Then Tn |= ϕ by An
2 .

Case An−1
3 : ϕ is

∨n−1
i=1 (Di ∧ ¬Ki(Di)). By A

n
3 , Tn |=

∨n
i=1(Di ∧ ¬Ki(Di)).

By the preliminary claim, Tn |= ¬Dn. It follows that Tn |= ϕ.

Case An−1
4 : ϕ is

∧n−2
i=1 (¬Di) → Ki+1(¬Di). Then Tn |= ϕ by An

4 .
Cases An−1

5 , An−1
6 , An−1

7 : similar to the previous cases, the results follow by
An

5 , A
n
6 , and A

n
7 , respectively.
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Case An−1
∞ : ϕ isKi(ψ) for some 1 ≤ i ≤ n−1 and some ψ such that Tn−1 |= ψ.

Since Tn−1 |= ψ, there are ψ1, . . . , ψℓ ∈ Tn−1 such that ψ1 → · · · → ψℓ → ψ is a
tautology and such that for all 1 ≤ j ≤ ℓ, Tn−1 |= ψj can be proven using fewer
applications of An−1

∞ than are needed to prove Tn−1 |= ϕ. Thus by induction,
Tn |= ψj for each 1 ≤ j ≤ ℓ. By Lemma 2 (part 2), Tn |= Ki(ψ). ⊓⊔

4 Redefining the surprise axiom

As suggested in Section 2, we now consider a variant of our formal system in
which the axiom modeling surprise is re-defined by adding a disjunct. The fol-
lowing definition states such a variant.

Definition 3. For each n ≥ 1, by Un we mean the theory consisting of the
following axioms:

– An
1 , A

n
2 , A

n
4 , A

n
5 , A

n
6 , A

n
7 .

– (An
3
′)

∨n
i=1(Di ∧ ¬Ki(Di)) ∨

∨
1≤i<j≤n(Di ∧Ki(Dj)).

– (An
T ) Ki(ϕ) → ϕ for all 1 ≤ i ≤ n and all ϕ.

– (An
∞

′) Ki(ϕ) for all 1 ≤ i ≤ n and all ϕ such that Un |= ϕ.

Note that An
3 is replaced by the more inclusive property we discussed above,

called An
3
′. As we mentioned, such an extension is actually equivalent to the

original axiom if we assume truthfulness of knowledge and knowledge of such
a factivity principle. Hence, under this hypothesis, the paradox is not actually
solved. To state this result formally, the system we consider combines the new
version of surprise An

3
′, the factivity axiom (see An

T , which states the truthfulness
of knowledge), and, by virtue of An

∞
′, also the knowledge of such a factivity.

Theorem 2. (A modified Surprise Examination paradox) For any n ≥ 1, Un is
inconsistent.

Proof. Since Theorem 1 says Tn is inconsistent, it will suffice to show Un |= Tn.
For this, it suffices to prove that whenever Tn |= ϕ, then Un |= ϕ. We prove this
by induction on the number of applications of Tn

∞ needed to prove Tn |= ϕ.
Trivial case: ϕ is an instance of An

1 , A
n
2 , A

n
4 , A

n
5 , A

n
6 , or A

n
7 . Then Un |= ϕ

since Un includes these axioms too.
Case An

3 : ϕ is
∨n

i=1(Di ∧ ¬Ki(Di)). By A
n
3
′, Un |=

∨n
i=1(Di ∧ ¬Ki(Di)) ∨∨

1≤i<j≤n(Di ∧ Ki(Dj)). To show Un |= ϕ, it suffices to show that for all 1 ≤
i < j ≤ n, Un |= ¬(Di ∧Ki(Dj)). Fix 1 ≤ i < j ≤ n. We reason within Un as
follows:

– Assume Di ∧Ki(Dj).
– By An

2 , it follows that ¬Dj .
– By An

T , Ki(Dj) → Dj .
– Contradiction. Discharge assumption and conclude ¬(Di ∧Ki(Dj)).

Case An
∞: ϕ is Ki(ψ) for some 1 ≤ i ≤ n and some ψ such that Tn |= ψ. Since

Tn |= ψ, there are ψ1, . . . , ψℓ ∈ Tn such that ψ1 → · · · → ψℓ → ψ is a tautology
and such that for all 1 ≤ j ≤ ℓ, Tn |= ψj can be proved using fewer applications
of An

∞ than are needed to prove Tn |= ϕ. By induction, Un |= Ki(ψj) for all
1 ≤ j ≤ ℓ. By Lemma 2 (part 2), Un |= Ki(ψ). ⊓⊔
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5 A resolution to the paradox

Apparently, extending the notion of surprise alone does not bring benefits. This
is true if a general notion of knowledge of factivity is assumed. For instance, in
the system of the previous section we can derive forms like, e.g., K1(K2(ϕ) → ϕ).
Generally speaking, at any time the factivity of any knowledge – past, present, or
future – is known. However, we argue that if we limit the knowledge of factivity,
then we obtain a system in which the paradox disappears.

Formally, in order to limit the knowledge of factivity, we restrict axiom An
T

by assuming that only the factivity of the knowledge of past events is known,
thus obtaining a new axiom An

T
′.

Definition 4. For each n ≥ 1, by (Vn)0 we mean the theory containing the
following axioms:

– An
1 , A

n
2 , A

n
3
′, An

4 , A
n
5 , A

n
6 , A

n
7 .

– (An
T
′) Kj(Ki(ϕ) → ϕ) for all 1 ≤ i < j ≤ n and all ϕ.

– (An
∞

′′) Ki(ϕ) for all 1 ≤ i ≤ n and all ϕ such that (Vn)0 |= ϕ.

For each 1 ≤ i ≤ n, by (Vn)
i
0 we mean the theory containing the following

axioms:

– (Vn)0.
– (An

T,i) Kj(ϕ) → ϕ for all 1 ≤ j < i and all ϕ.

– (An
i,∞) Kj(ϕ) for any 1 ≤ j ≤ i and all ϕ such that (Vn)

j
0 |= ϕ.

For each n, by Vn we mean the theory containing:

– (Vn)
1
0, . . ., (Vn)

n
0 .

– (An
T ) Ki(ϕ) → ϕ for all 1 ≤ i ≤ n and all ϕ.

The inductive definition of the theory Vn preserves the condition stating that
Kj(Ki(ϕ) → ϕ) holds for all j > i, i.e., simply put, the students become aware
tomorrow of the factivity of what they know today. Such an inductive definition
will allow us to prove by induction that Vn is consistent (if n > 2), thus making
the paradox disappear. We will show Vn is consistent by constructing a model,
i.e., an assignment of truth values to the basic formulas of L (see Definition 1),
and showing that that model satisfies Vn.

Lemma 3. For any n, for any 1 ≤ i < j ≤ n, (Vn)
i
0 ⊆ (Vn)

j
0.

Proof. By inspection. ⊓⊔
Theorem 3. For every n > 2, Vn is consistent.

Proof. The intuitive idea is that we will construct a model in which on each
day, the students’ knowledge consists of the bare minimum required to satisfy
Vn, namely, exactly those facts which Vn requires them to know on that day,
and nothing else. We will then verify that the resulting model satisfies all the
required axioms, and this will be mostly straightforward, with the exception of
An

3
′, for which we will have to construct another model (see below).
Since n > 2, we may fix some 1 ≤ m < n− 1. For each 1 ≤ i ≤ n, let Wi be

the theory containing the following axioms:
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– (Vn)
i
0.

–
∧

1≤j<i,j ̸=m ¬Dj .

By Lemma 3 it follows that whenever 1 ≤ i < j ≤ n, Wj |=Wi.
We define a model M as follows:

– M |= Dm.
– For all i ̸= m, M ̸|= Di.
– For all 1 ≤ i ≤ n, for all ϕ, M |= Ki(ϕ) iff Wi |= ϕ.

To show Vn is consistent, it suffices to show that M |= Vn.
Claim 1: For each 1 ≤ p ≤ n, M |= Wp. We prove this by induction on p.

We will show M |= ϕ for all ϕ ∈Wp. Fix any such ϕ.
Case An

1 : ϕ is
∨n

i=1Di. Then clearly M |= ϕ.
Case An

2 : ϕ is
∧

1≤i<j≤n ¬(Di ∧Dj). Then clearly M |= ϕ.

Case An
3
′: ϕ is

∨n
i=1(Di ∧ ¬Ki(Di)) ∨

∨
1≤i<j≤n(Di ∧ Ki(Dj)). To show

M |= ϕ, it suffices to show M satisfies any one of the disjuncts. We will
show M |= Dm ∧ ¬Km(Dm). By construction M |= Dm. It remains to show
M |= ¬Km(Dm). In other words, we must show Wm ̸|= Dm. We will construct
a model N such that N |=Wm and N ̸|= Dm.

The intuitive idea is that in N , the exam will occur on day n−1, the students
will initially (before day m) know the bare minimum that Wm requires them to
know, but, starting on day m, the students’ knowledge will become inconsistent:
from that day on, they will know everything (including incorrectly knowing that
the exam will occur on day m). The fact that the students are not factive in N
(on days ≥ m) is not problematic: the purpose of N is not to, itself, directly
satisfy Vn (which requires factivity), but only to show that Wm ̸|= Dm.

Let N be the model defined by:

– N |= Dn−1.
– For all i ̸= n− 1,N ̸|= Di.
– For all 1 ≤ j < m and all ϕ, N |= Kj(ϕ) iff Wj |= ϕ.
– For all m ≤ j ≤ n and all ϕ, N |= Kj(ϕ).

Since m < n − 1, N ̸|= Dm. We claim N |= Wm. We will prove more, for the
sake of a stronger induction hypothesis: we will prove by induction on q that
N |=Wq for all q ≤ m. Let ψ ∈Wq.

Subcase An
1 (Wq): ψ is

∨n
i=1Di. Then clearly N |= ψ.

Subcase An
2 (Wq): ψ is

∧
1≤i<j≤n ¬(Di ∧Dj). Then clearly N |= ψ.

Subcase An
3
′(Wq): ψ is

∨n
i=1(Di∧¬Ki(Di))∨

∨
1≤i<j≤n(Di∧Ki(Dj)). To show

N |= ψ, it suffices to show N satisfies any one of the disjuncts. We will show
N |= Dn−1 ∧ Kn−1(Dn). By construction N |= Dn−1. And N |= Kn−1(Dn)
because m ≤ n− 1 ≤ n (so Kn−1 is defined in the 4th bullet of the definition of
N ).

Subcase An
4 (Wq): ψ is

∧n−1
i=1 ((¬Di) → Ki+1(¬Di)). Fix any 1 ≤ i ≤ n −

1, we will show N |= (¬Di) → Ki+1(¬Di). If i + 1 < m, then, since Wi+1

contains
∧

1≤j<i+1,j ̸=m ¬Dj , in particular (using j = i), Wi+1 |= ¬Di. Thus
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N |= Ki+1(¬Di) by bullet 3 in the definition of N . On the other hand, if
i+ 1 ≥ m, then N |= Ki+1(¬Di) by bullet 4 in the definition of N .

Subcase An
5 (Wq): ψ is Ki(ρ) for some 1 ≤ i ≤ n and some tautology ρ. If

i < m then Wi |= ρ (because ρ is a tautology) and thus N |= Ki(ρ) (by bullet 3
in the definition of N ). On the other hand, if i ≥ m, then N |= Ki(ρ) by bullet
4 in the definition of N .

Subcase An
6 (Wq): ψ is Ki(ρ → τ) → Ki(ρ) → Ki(τ) for some 1 ≤ i ≤ n

and some ρ, τ . If i ≥ m then N |= Ki(τ) by bullet 4 in the definition of N .
But assume i < m. Assume N |= Ki(ρ → τ) and N |= Ki(ρ). By bullet 3 in
the definition of N this means Wi |= ρ → τ and Wi |= ρ. Thus Wi |= τ , so
N |= Ki(τ).

Subcase An
7 (Wq): ψ is Ki(ρ) → Kj(ρ) for some 1 ≤ i < j ≤ n. If j ≥ m then

N |= Kj(ρ) by bullet 4 in the definition of N . But assume j < m. Assume
N |= Ki(ρ). By bullet 3 in the definition of N , Wi |= ρ. Since i < j, we have
Wj |=Wi, thus Wj |= ρ, so N |= Kj(ρ).

Subcase An
T
′(Wq): ψ is Kj(Ki(ρ) → ρ) for some 1 ≤ i < j ≤ n and some

ρ. If j ≥ m then N |= Kj(Ki(ρ) → ρ) by bullet 4 in the definition of N . But

assume j < m. By An
T,j , (Vn)

j
0 |= Ki(ρ) → ρ, thus Wj |= Ki(ρ) → ρ since Wj

includes (Vn)
j
0. Thus N |= Kj(Ki(ρ) → ρ) by bullet 3 in the definition of N .

Subcase An
∞

′′(Wq): ψ is Ki(ρ) for some 1 ≤ i ≤ n and some ρ such that
(Vn)0 |= ρ. If i ≥ m then N |= Ki(ρ) by bullet 4 in the definition of N . But
assume i < m. Since (Vn)0 ⊆ (Vn)

i
0 ⊆Wi, we haveWi |= ρ and thus N |= Ki(ρ)

by bullet 3 in the definition of N .

Subcase An
T,q(Wq): ψ is Kj(ρ) → ρ for some 1 ≤ j < q. Assume N |= Kj(ρ).

Since j < q ≤ m, bullet 3 in the definition of N says Wj |= ρ. Since j < q, we
can finally use our strong q-induction hypothesis: by induction, N |=Wj . Thus
N |= ρ.

Subcase An
q,∞(Wq): ψ is Kj(ρ) for some 1 ≤ j ≤ q and some ρ such that

(Vn)
j
0 |= ρ. If j ≥ m then N |= Kj(ρ) by bullet 4 in the definition of N . But

assume j < m. Since (Vn)
j
0 |= ρ and (Vn)

j
0 ⊆ Wj , we see Wj |= ρ and thus

N |= Kj(ρ) by bullet 3 in the definition of N .

Subcase
∧

1≤j<q,j ̸=m ¬Dj (Wq): ψ is
∧

1≤j<q,j ̸=m ¬Dj . If q = 1 then the
conjunction is empty, so N |= ψ vacuously. Assume q > 1. Let 1 ≤ j < q,
j ̸= m. Since q ≤ m < n− 1, it follows that j < n− 1, so N |= ¬Dj by bullet 2
in the definition of N .

This concludes the proof that N |= Wq for all q ≤ m. In particular, N |=
Wm. Since N ̸|= Dm, this concludes the proof that Wm ̸|= Dm. This concludes
the proof that M |= ¬Km(Dm). Since M |= Dm, this concludes the proof that
M |= Dm ∧ ¬Km(Dm). This concludes Case An

3
′.

Case An
4 : ϕ is

∧n−1
i=1 ((¬Di) → Ki+1(¬Di)). Fix 1 ≤ i ≤ n − 1 and assume

M |= ¬Di. Since M |= Dm, this implies i ̸= m. Thus, since Wi+1 includes∧
1≤j<i+1,j ̸=m ¬Dj , we see Wi+1 |= ¬Di. Thus M |= Ki+1(¬Di).

Case An
5 : ϕ is Ki(ψ) for some 1 ≤ i ≤ n and some tautology ψ. Since ψ is a

tautology, Wi |= ψ, thus M |= Ki(ψ).
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Case An
6 : ϕ is Ki(ψ → ρ) → Ki(ψ) → Ki(ρ) for some 1 ≤ i ≤ n and some

ψ, ρ. Assume M |= Ki(ψ → ρ) and M |= Ki(ψ). Then Wi |= ψ → ρ and
Wi |= ψ, thus Wi |= ρ, thus M |= Ki(ρ).

Case An
7 : ϕ is Ki(ψ) → Kj(ψ) for some 1 ≤ i < j ≤ n. Assume M |= Ki(ψ),

so Wi |= ψ. Since Wj |=Wi, we see Wj |= ψ. Thus M |= Kj(ψ).
Case An

T
′: ϕ is Kj(Ki(ψ) → ψ) for some 1 ≤ i < j ≤ n and some ψ. By

An
T,j , (Vn)

j
0 |= Ki(ψ) → ψ. Since (Vn)

j
0 ⊆ Wj , we see Wj |= Ki(ψ) → ψ, thus

M |= Kj(Ki(ψ) → ψ).
Case An

∞
′′: ϕ is Ki(ψ) for some 1 ≤ i ≤ n and some ψ such that (Vn)0 |= ψ.

Since (Vn)0 ⊆ (Vn)
i
0 ⊆Wi, we see Wi |= ψ, thus M |= Ki(ψ).

Case An
T,p: ϕ is Kr(ψ) → ψ for some 1 ≤ r < p. Assume M |= Kr(ψ), so

Wr |= ψ. By our p-induction hypothesis, M |=Wr. Thus M |= ψ.
Case An

p,∞: ϕ is Kj(ψ) for some 1 ≤ j ≤ p and some ψ such that (Vn)
j
0 |= ψ.

Since (Vn)
j
0 ⊆Wj , we see Wj |= ψ. Thus M |= Kj(ψ).

Case
∧

1≤j<i,j ̸=m ¬Dj : ϕ is
∧

1≤j<i,j ̸=m ¬Dj . Then clearly M |= ϕ.
This concludes the proof of Claim 1.
Claim 2: M |= Ki(ϕ) → ϕ for all 1 ≤ i ≤ n and all ϕ. Fix any such i and

assume M |= Ki(ϕ), which meansWi |= ϕ. By Claim 1, M |=Wi. Thus M |= ϕ.
Since each Wi includes (Vn)

i
0, Claims 1–2 together show M |= Vn. ⊓⊔

It is a straightforward exercise to show that (V2)0 |= ¬D2 (by similar rea-
soning as in the preliminary claim in the proof of Theorem 1), so by Lemma
2, (V2)0 |= K1(¬D2). From this it is an easy exercise to show (V2)0 |= K1(D1).
Together this rules out the first two disjuncts of

A2
3
′ ≡ (D1 ∧ ¬K1(D1)) ∨ (D2 ∧ ¬K2(D2)) ∨ (D1 ∧K1(D2)),

so (V2)0 |= D1∧K1(D2). By A
2
T
′′
, V2 |= D2. But V2 |= ¬D2. So V2 is inconsistent.

And V1 is clearly inconsistent. Thus the requirement n > 2 in Theorem 3 is sharp.

6 Whether knowledge-of-factivity should be assumed?

We will argue that knowledge-of-factivity should not be assumed. Due to antic-
ipated controversy, we will address the question in the style of a metaphysical
disputation, giving the top priority not to ourselves but to our opponents, as
in Thomas Aquinas’s Summa Theologica. For in philosophy, anyone can argue
anything, thus the real test is not how one argues one’s own position, as much
as how one replies to objections. Thus we present, in order:

– Anticipated objections to our answer.
– Our answer.
– Replies to objections.

Objection 1: Factivity is part of the definition of knowledge, which definition
knowers should know. Therefore, knowledge-of-factivity should be assumed.

Objection 2: Knowledge should conform to Kripke’s possible-worlds seman-
tics. And factivity itself should certainly be assumed, thus factivity should hold
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in all possible worlds. But in Kripke’s semantics, anything that holds in all pos-
sible worlds is known.

Objection 3: The teacher’s implicit trustworthiness is essential to the surprise
examination paradox. Presumably the students are aware that they trust the
teacher. And presumably they would have known their own factivity, had the
teacher stayed silent. But an announcement from a trusted source should not
cause the students to suddenly doubt their own factivity.

Objection 4: For any statement S(X), for any A and B, if A = B, then
S(B) implies S(A). Let S(X) be “The students know the factivity of X”. Let
A be the consequences of the teacher’s announcements, and let B be the true
consequences of the teacher’s announcements. Clearly we should assume S(B).
But the teacher is truthful, thus A = B, so S(B) implies S(A).

Objection 5: If the paradox is allegedly resolved by weakening knowledge-of-
factivity, it re-emerges if the teacher announces “there will be a surprise exam
next week, and you are factive”. Thus, as far as paradoxes go, we gain little or
nothing by refusing knowledge-of-factivity.

We answer that: There are different types of students. On one extreme, there
are students who merely take the teacher’s sayings as a guide to more quickly
discover what they could have discovered on their own. Thus, the boy in Plato’s
Meno (82b-85d) could have discovered geometry on his own, without Socrates.
For this type of student, knowledge-of-factivity might be a very reasonable as-
sumption. On the opposite extreme, some students accept whatever the teacher
says. For example, a robot might be programmed to accept everything its owner
tells it. Students of the former extreme can never be taught contingent facts, just
as Russell could not teach Wittgenstein that there is no rhinocerus in the room.
Examinations are contingent, thus the surprise examination paradox only makes
sense for students who accept what the teacher tells them. So we should here
treat students as if they’re bound to accept whatever their teacher says. Now, the
students can remember things the teacher said in the past, but they cannot pre-
dict what the teacher will say in the future. On Monday, they cannot predict that
“tomorrow (or even later today) the teacher will not declare anything contradic-
tory,” and so they cannot predict that what they can deduce from the teacher
will, on Tuesday, be factive. Indeed, the students themselves might not even call
their knowledge “knowledge”, but rather “belief” or “teacher-provability”. But
if we outside observers do know that the teacher is truthful, then we can call the
students’ belief “knowledge” even if they themselves don’t. So our answer is, we
should not assume knowledge-of-factivity, because students cannot predict the
teacher won’t say something false.

Finally, we can reply to the previous objections.
Reply to Objection 1: When the students reason about what they can or cannot
deduce from their teacher, they do not know that they are reasoning about their
own knowledge. To them, the Ki operators of Definition 1 are provability opera-
tors, some of which might be un-factive if, in future, the teacher says something
contradictory. If we outside observers know the teacher will never contradict her-
self, then we can think of Ki as knowledge, but that doesn’t imply the students
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must. “For it is possible for us to think we do not know what in fact we do
know” (Descartes).

Reply to Objection 2: Kripke semantics are only appropriate when the knower
knows that the modalities in question conform to Kripke semantics. See also [3].

Reply to Objection 3: Prior to the teacher’s saying anything, the students
may have known the factivity of their past knowledge. But they could not then
have known the factivity of what we call their future knowledge (and what they
might call “things we will be able to deduce from the teacher in future”), because
they cannot predict the future.

Reply to Objection 4: This fallacy is known as the morning star paradox [12].
For, let S(X) be “Everyone knows the morning star is X”, let A be the evening
star, and let B be the morning star. Then S(B) seems plausible, and A = B (A
and B equal planet Venus), yet S(A) seems implausible. This shows replacement
does not work this way in modal logic in general.

Reply to Objection 5: If the teacher announces factivity, then the set of
all things the teacher has announced becomes a theory that proves its own
consistency. If the resulting inconsistency is a “paradox”, then by the same logic,
so is Gödel’s 2nd incompleteness theorem. But said theorem is not generally
considered a paradox.

7 Conclusion

We have argued that factivity, and knowledge-of-factivity, play an implicit role
in the surprise examination paradox, even though at first glance the paradox
might not seem to assume them at all. If students know the surprise exam will
take place on Friday, then it would be surprising to them if the surprise exam
takes place on Thursday. That such situations are not included in the definition
of surprise in standard formalizations of the paradox is apparently because such
situations are impossible: the students cannot know the exam will take place on
Friday if in fact the exam takes place on Thursday, because knowledge is factive.
But for the students themselves to simplify the definition of surprise in this way,
they themselves would need to know their own factivity. So, even though at first
glance the paradox does not seem to hinge on factivity or the knowledge thereof,
it seems that factivity and knowledge-of-factivity play an implicit role in the
definition of surprise.

One might hope that the surprise examination paradox would vanish if we
merely redefined surprise to include such impossible situations as the students
knowing the exam will be Friday even though the exam is in fact Thursday.
But we showed in Theorem 2 that the paradox evades this attempted resolution,
provided that factivity and knowledge-of-factivity are assumed.

However, in Theorem 3, we showed that if surprise is thus redefined, and if
the assumption of knowledge-of-factivity is dropped (even while still assuming
factivity itself), then the paradox vanishes. In fact, we showed even more. We
showed the paradox still vanishes even if knowledge-of-factivity is not totally
dropped: if knowledge-of-factivity is weakened to the statement that, on each
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day, the students know the factivity of their own knowledge from prior days,
then that weakening is already sufficient to remove the paradox.

Thus, in our opinion, the surprise examination paradox results from two
flaws: the assumption of knowledge-of-factivity (that, in addition to the stu-
dents’ knowledge being factive, that the students themselves know as much),
and the over-simplification of the definition of surprise accordingly. This is an
important step forward with respect to conjectures proposed in the literature (as
those, e.g., by McLelland and Chihara [17]) and focusing on the role of different
forms of positive introspection (based on the KK rule) as the causal factors trig-
gering the paradox. Along this line of reasoning, in [18] the authors show that
the KK principle is unrelated to the causes of the paradox, and in fact even in
our formalization this rule is not assumed to derive a contradiction2. The same
authors of [18] focus instead on the retention principle, by showing that invali-
dating it suffices to restore consistency. In other cases, the paradox is resolved by
assuming that the teacher’s announcement is actually never known, or that the
students do not trust it for the whole week, which is similar to stating that the
students do not retain knowledge in general. With respect to these proposals,
our work contributes with a new perspective allowing us to resolve the paradox
by giving up a very specific form of knowledge.

We also point out that our solution relies purely on arguments about knowl-
edge, thus differing from other approaches that deal with the paradox by replac-
ing the notion of knowledge by the notion of provability [6], as done, e.g., in [14],
where Gödel’s second Incompleteness Theorem is used to offer a way out of the
antinomy.

In future work, we would like to investigate the possibility of simultaneously
resolving multiple epistemic paradoxes at once by the construction of a single
model. For example, imagine that to the formulas of L (Definition 1) we added
an additional clause saying that for every i = 1, 2, . . ., there is a non-atomic
formula Li; and imagine that for semantics, we declare that for every model
M , M |= Li iff M |= Ki(¬Li). Thus Li is a variation of the liar sentence for
the students’ knowledge on midnight just before day i: intuitively, Li could be
thought of as the sentence: “On midnight just before day i, we know this sen-
tence is false”. In this expanded logic, it can be shown that, e.g., S4 (or even
weaker systems including knowledge-of-factivity) are inconsistent—this is a tem-
poral variation of the Paradox of the Knower. We conjecture that by modifying
the construction in Section 5, it would be possible to construct a single model
which simultaneously resolves the surprise examination paradox and this tem-
poral version of the Paradox of the Knower. We conjecture it would even be
possible to construct the model in such a way as to satisfy Kj(¬Li) whenever
i < j, i.e., so that the students know (on any day) the falsehood of earlier days’
liar sentences. Resolving multiple paradoxes at once, with the same model, and
by weakening the same assumption, would be, in our opinion, strong evidence in

2 It can be shown that a temporal version of the KK axiom can be added to Vn,
without disrupting its consistency, thus emphasizing once more that KK is not the
cause of the paradox.
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favor of the correctness of said resolution. Moreover, it would confirm the central
role of own factivity and its knowledge/ignorance, as already emphasized, e.g.,
in computational contexts, see, e.g., [2, 1].
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