
Using Maude to Model Motivation in Human
Behaviour?

Antonio Cerone[0000−0003−2691−5279] and Olzhas Zhalgendinov

Department of Computer Science, School of Engineering and Digital Sciences,
Nazarbayev University, Astana, Kazakhstan

antonio.cerone@nu.edu.kz olzhas.zhalgendinov@nu.edu.kz

Abstract. Human beings act and think driven by motivation, which
can be physiological as well as psychological. Although there is no uni-
fied theory of motivation, there are a number of theories in psychology
that define conceptual models to explain distinct kinds and aspects of
motivation. Such a conceptual fragmentation of the notion of motivation
makes it very challenging the attempt to build a formal framework to
model motivation. In this paper we address the needs underlying moti-
vation, focusing in particular on physiological needs, such as the ones for
food, water and sleep, and on the lowest level of psychological needs, the
needs for safety and security. We use BRDL (Behaviour and Reasoning
Description Language) to model human behaviour and thinking as well
as its psychological motivation and LTS s (Labelled Transition Systems)
to model physiological motivation. Finally, we illustrate our translation
of this formal framework into the Maude rewrite language, which sup-
ports the simulation and analysis of the modelled cognitive systems.

Keywords: Behaviour and Reasoning Description Language (BRDL) ·
Labelled Transition Systems (LTSs) · Cognitive Modelling · Rewriting
Logic · Maude · Theories of Motivation

1 Introduction

Motivation is what causes us to act. It may be a rational reason, an intense
desire, an emotional impulse, or a physiological need. Physiological needs, such
as the ones for food, water and sleep, keep individuals alive. Desires and impulses
are important aspects of the life of each individual and, in an evolutionist sense,
they aim at the preservation of the species through social development, which
foster collaboration and mutual support, and by intertwining with emotional
states, such as love, which is essential for reproduction. Looking for rational
reasons to act is a distinctive aspect of the human species and drives cultural
and technological development.

This multifaceted nature of motivation makes it difficult to build a general
theory of motivation. The first attempt, the instinct theory [13], aimed at iden-
tifying all possible instincts either physical (e.g., locomotion) or mental (e.g.,

? Work funded by the School of Engineering and Digital Sciences (SEDS), Nazarbayev
University, Astana, Kazakhstan.



2 A. Cerone and O. Zhalgendinov

curiosity). However, the number of proposed instincts became soon countless,
thus making the theory too complicated. The focus moved then to the physiol-
ogy of motivation, with the drive theory [11, 12, 18] emphasising the compelling
urge (drive) to act in order to reduce physiological needs. But reducing needs is
not enough to explain motivation, which made drive theory fall out of favour.

Explaining how to maintain the right balance between deficit and surplus is
the objective of homeostatic-regulation theory [3]. This theory explains motiva-
tion as the tendency of the body to maintain a state of equilibrium (e.g., hunger
is balanced by eating). Further theories try to address other aspect of motiva-
tion. Opponent-process theory [17] links motivation to emotion by explaining the
acquisition of motivation as the result of a pattern of emotional experience (e.g.,
the motivation to use psychoactive drugs). According to arousal theory [2, 19],
the activity of the central nervous system determines the appropriate level of
arousal for a given task in relation to the individual’s personality (e.g., in gen-
eral a low level of arousal would help in a complex task to prevent anxiety, but
this is not the case for anxious personalities).

In this paper we aim at building executable models for human behaviour,
which incorporate motivational aspects. We use a high-level notation, the Be-
haviour and Reasoning Description Language (BRDL) that allows psychologists
and cognitive scientists to model and analyse human cognition in terms of their
required attentional, reasoning and action components. With respect to our pre-
vious work on BRDL [6] and its use for modelling motivation generated by
physiological needs [7], in this paper we consider the first two levels of Maslow’s
hierarchy of motivation [14, 15], which include not only physiological needs but
also psychological needs, such as safety and security.

BRDL has been implemented using the Maude rewrite language and toolset
[16], thus providing a framework for the in silico simulation of human reasoning
[9], some aspects of human learning [8, 10] and the interaction with heterogenous
physical components [4, 5]. However, motivation was not considered in such im-
plementation. In this paper we extend the BRDL implementation by addressing
the physiological aspects of motivation defined in our previous work [7] as well
as psychological needs. Additionally, we also implement the use of variables in
the BRDL framework, a feature needed to describe quantitative aspects of mo-
tivation, but which also greatly increases the framework expressiveness.

The rest of the paper is organised as follows. Sect. 2 defines our conceptual
model for motivation and Sect. 2.1 illustrates it on the example of a user of a
vending machine, which will follow us throughout the paper. Sect. 3 introduces
BRDL syntax and Sect. 3.1 shows how to model motivation at a cognitive level.
Sect. 4 revisits the environmental and physiological models introduced in our
previous work [7], with reference to our current example. Sect. 5, after a short
overview of Maude (Sect. 5.1), describes the implementation in Maude, including
the translation of the BRDL syntax (Sect. 5.2), the infrastructure for modelling
the variables (Sect. 5.3) and the rewite rules that define the overall system
behaviour (Sect. 5.4). Finally, Sect. 6 shows the results of analysing our example
using Maude, draws conclusions and discusses possible future work.



Using Maude to Model Motivation in Human Behaviour 3

2 A Conceptual Model of Motivation

According to the hierarchical theory of motivation proposed by Abraham Maslow
[14, 15] human needs can be organised into the following hierarchy:

1. Physiological needs are at the lowest level and are the basic, essential needs
that allow individuals to live, such as the needs for food, water, sleep, which
have as physiological motivators hunger, thirst, tiredness, respectively.

2. Safety and security needs aim at building and maintaining the appropriate
living environment in which individuals are protected from environmental
danger (safety) and social threats (security).

3. Belongness and loving needs aim at being accepted and cared by the society,
that is, by the other individuals.

4. Esteem needs aim at feeling worthwhile, both in terms of self-appreciation
and by comparing themselves to the other individuals.

5. Self-actualisation needs aim at fulfilling the human potential for purely he-
donistic purposes, independently of external influences.

Level 1 is driven by physiological motivators, such as hunger, thirst and tired-
ness, while the higher levels are mostly driven by psychological motivators. Only
when we have satisfied a specific level of needs, we move to the higher level.
Thus, according to Maslow, we consider our safety and security only after hav-
ing satisfied our physiological needs, such as food, water and sleep. In this paper
we develop a model that covers the first two levels of Maslow’s hierarchy.

In modelling physiological motivation, we adopt the homeostatic-regulation
theory [3] which explains motivation as the tendency of the body to maintain a
state of equilibrium (e.g., hunger is balanced by eating). However, this theory
cannot explain higher-level needs, which are acquired through experience or
exposure to a specific cultural environment. In this paper, we assume these
needs already acquired.

2.1 Conceptual Model Example: the User of a Vending Machine

Let us consider an example that will follow us throughout the paper. Imagine
being a user of a food vending machine in your office. You normally purchase a
product from the machine every morning and you consume it later, when you
become hungry. Thus, when you purchase the product, you are not driven by
hunger, but by the will to be able to safely choose the product you prefer before
it runs out and to avoid the lunchtime queue. Therefore, we can say that you
have a level-2 need when you purchase and a level-1 need when you eat.

Suppose that one day you are trapped in an important meeting the whole
morning and when you get out you are very hungry. You immediately run to
the vending machine to purchase some food. This time you do not have a level-2
need when you purchase, but a level-1 need.

The vending machine is operated using a rechargeable card and a pin code,
similarly to an automatic teller machine (ATM). You insert the card first and



4 A. Cerone and O. Zhalgendinov

then you enter the pin code. If you have inserted the correct pin code, the card is
returned first and, after you have collected it, the product is delivered. However,
if you enter a wrong pin code, you get a warning and the option to either reenter
the pin or abort the task. In this case, reentering a wrong pin within one hour
will cause the card to be confiscated. If you abort, the card is returned and the
product is not delivered. If you enter a wrong pin while you are not hungry, since
you do not have a level-1 need, you can satisfy your level-2 needs and delay the
purchase one hour in order to be safe from immediate confiscation, in case you
entered a wrong pin again. But if you enter a wrong pin while you are hungry,
then you are driven by a level-1 need and do not consider any level-2 needs.
Thus, in this case, you reattempt the purchase with the risk of an immediate
confiscation.

3 Formal Cognitive Model

BRDL models the content of long-term memory (LTM) in terms of cognitive
rules (also called LTM rules) that either drive selective attention or represent
factual knowledge or procedural knowledge. Cognitive rules drive the processing
of information that has been transferred to short-term memory (STM) and may
consist of facts retrieved from LTM, perceptions from the environment, action to
be carried out on the environment and goals defining what you want to achieve.
Thus STM acts as temporary store and is often called working memory (WM)
when it is considered together with all its information processing functionalities.

Each cognitive rule has a general structure

g : info1 ↑ perc =⇒ act ↓ info2

where

– g is a goal;
– perc is a perception from the environment;
– act is an action performed on the environment;
– info1 is the information to be removed from STM;
– info2 is the information or goal to be stored in STM.

Symbol ↑ suggests removal from STM whereas symbol ↓ suggests storage in
STM. We call enabling the part of the rule on the left of =⇒ and performing the
part of the rule on the right of =⇒. The execution of a cognitive rule is enabled
by the presence of goal g and information info1 in STM, and by the perception
perc from the environment, and results in the removal of info1 from STM and
the human performance of action act on the environment and the storage of new
information info2 in STM.

Information info1 consists of a set of basic items, which are syntactically
listed as sequence with a comma as a separator, but whose order is semantically
irrelevant. Each basic item may be a perception, an action or a cognitive state.
In addition to basic items, info2 may also contain a goal. In fact, when the goal



Using Maude to Model Motivation in Human Behaviour 5

g is present in the rule, it is the only goal enabling the rule, while goals that
may be in info2 are actually produced in STM by performing the rule.

The syntax of goals is goal(achievement), where achievement is a set of basic
items. The goal is achieved when achievement contains the currently performed
action or a basic item stored in STM. Once the goal is achieved, it is removed
from STM. The absence of goal is denoted by goal(). In this case the syntax of
a cognitive rule can be shortened as

info1 ↑ perc =⇒ act ↓ info2

When the goal is present and the perception is not, the control of attentional
selection and behaviour is deliberate and is finalised to accomplish the informa-
tion that is the arguments of the goal g. When the perception is present and
the goal is not, the control of attentional selection and behaviour is automatic.
When both the goal and the perception are not present, the rule models a mental
inferential process consisting in the replacement of info1 with info2. When both
the goal and the perception are present, the control of attentional selection and
behaviour is hybrid, that is, driven by the goal (there is a deliberate decision to
act or carry out a mental or attentional process), but reactive to the perception
(the modality of acting or processing is automatic).

3.1 Cognitive Model Example: the User of a Vending Machine

The cognitive model of the vending machine user described in Sect. 2.1 is for-
malised in BRDL as follows:

goal(collect food, abort collect food) : ↑ requested card

=⇒ insert card ↓ expect requested pin (1)

goal(eat) : ↑ requested card =⇒ insert card ↓ expect requested pin (2)

expect requested pin ↑ requested pin =⇒ enter pin ↓ expect returned card (3)

expect returned card ↑ returned card

=⇒ collect card ↓ expect delivered food (4)

expect returned card ↑wrong pin warning

=⇒ ↓wrong pin warning (5)

goal(collect food, abort collect food) : wrong pin warning ↑
=⇒ abort ↓ abort collect food (6)

goal(eat) : wrong pin warning ↑ requested pin

=⇒ enter pin ↓ expect returned card (7)

abort collect food ↑ returned card =⇒ collect card ↓ (8)

expect delivered food ↑ delivered food

=⇒ collect food ↓ food available (9)

goal(eat) : food available ↑ =⇒ eat ↓ (10)

The interaction is initiated by either rule 1 or rule 2. Rule 1 addresses level-2
needs by having the goal to either collect the food, to consume later, or abort the



6 A. Cerone and O. Zhalgendinov

interaction, as a protection from card confiscation in case of wrong pin. Rule 2
addresses level-1 needs by having the goal to eat the food immediately. Both
rules also require the perception that the vending machine requests the user to
insert the card in order to be enabled and determine the action of inserting the
card and the storage in STM of the expectation that the machine will request
the pin next.

Rules 3 and 4 are driven by the matching expectations and perception that
the machine requests the pin and returns the card, respectively, and determine
the actions of entering the pin and collecting the card, respectively. Rules 5
models the implicit attention to the perception of the warning that a wrong pin
has been entered, thus failing to meet the expectation.

Rules 6 and 7 model the reaction of the user to the warning. Rule 6 is
driven by a goal expressing level-2 needs and aborts the interaction as a conse-
quence of the warning thus avoiding card confiscation. Since the rule stores item
abort collect food in STM and such an item is in the goal achievement, the goal
is achieved and removed from STM, but card collection occurs through rule 8,
which does not have goal and models an automatic behaviour. The goal removal
prevents rule 1 from being enabled upon the request by the system to reenter
the pin. However, a hungry user has goal goal(eat), which expresses a level-1
need, thus enabling rule 7 once the system requests the user to reenter the pin.
In this way, a user with level-1 ignores any level-2 needs.

Item food available is stored in STM by rule 9. Finally, rule 10 is enabled by
the goal goal(eat) and the food availability, and determines the action of eating
the food. A user who is hungry while purchasing the food already has the goal
goal(eat) and eats the food immediately. Instead, a user who has purchased the
food in advance will have the goal goal(eat) at a later stage, when becoming
hungry.

4 Formal Environmental Model and Physiological Model

With reference to the example in Sec 3.1, we illustrate in Sect. 4.2 how the
user interacts with the external environment and in Sect. 4.3 how goals (such
as goal(eat)) are stored in STM as the result of physiological processes (such
as becoming hungry). But first, in Sect. 4.1 we introduce Labelled Transition
Systems (LTS) to model the external environment with which the user interacts
as well as the internal physiology of the user.

4.1 Labelled Transition Systems(LTS)

We define an LTS by

– a set of perceptions;
– a set of invisible atomic states;
– an initial state consisting of a set of perceptions and a set of invisible atomic

states;



Using Maude to Model Motivation in Human Behaviour 7

– a set of transition rules visible1 [invisible1]
act−→ visible2 [invisible2], where

sets of perceptions visible1 and visible2 and set of invisible atomic states
invisible1 and invisible2 are represented by element separated by commas.

The system evolves starting from the initial state. Each transition rule models
the transition from a source state consisting of a visible components visible1
and an invisible component invisible1 to a target state consisting of a visible
components visible2 and and invisible component invisible2. The transition is
triggered by action act.

4.2 External Environment: Interaction and Use of Variables

The interaction between the human component and the external environment is
given through the synchronisation between a cognitive rule

g : info1 ↑ perc =⇒ act ↓ info2
and a transition rule

perc, visible1 [invisible1]
act−→ visible2 [invisible2]

which share the same action act. The transition is enabled if the current state of
the LTS includes perc, visible1 as a subset of its visible component and invisible1
as a subset of its invisible component. The transition changes the state of the LTS
by replacing perc, visible1 by visible2 in its visible component and invisible1 by
invisible2 in its invisible component. Note that visible2 may contain perc.

For example, the interaction between a user and a vending machine modelled
in Sect. 3.1 occurs through actions insert card (rules 1 and 2), enter pin (rule 3
and 7), collect card (rules 4 and 8), abort (rule 6) and collect food (rule 9). If
we consider rule 4, the machine detection of the user’s action of collecting the
card is formalised by transition rule

returned card [ ]
collect card−→ delivered food [ ] (11)

Rule 4 and transition 11 share action collect card. If the machine is in state
returned card, the transition, which has only visible part, is enabled and sy-
chronises with rule 4, which has returned card as the perception. The transition
execution changes the machine state to delivered food thus enabling rule 9.

As an example of use of variables in defining the environment, consider the
situation in which the hungry user of our vending machine enters a wrong pin
for the second time, thus causing a card confiscation. The LTS that models
the vending machine must use a variable pin attempts to count the attempts
to enter. Thus the transition that perform the card confiscation is modelled as
follows:

requested pin [ pin attempts = 1 ]
enter pin−→

confiscated card [ pin attempts + = 1 ] (12)

Note that on the left-side of the transition variables are used with conditions,
whereas in its right-side they are used within assignments.



8 A. Cerone and O. Zhalgendinov

4.3 Interaction with the Internal Physiology

Interaction with the internal physiology is modelled through the direct effect of a
transition rule on STM or through the transition being triggered by the content
of STM. There are three kinds of transition rules that directly effect STM. Given
information info, which may include goals,

– visible1 [invisible1]
↓info−→ visible2 [invisible2] stores info in STM;

– visible1 [invisible1]
info↑−→ visible2 [invisible2] removes info from STM;

– visible1 [invisible1]
↓info↑−→ visible2 [invisible2] is triggered by the presence of

info in STM but does not change the content of STM.

As discussed in Sect. 2, we adopt the homeostatic-regulation theory [3], which
explains motivation as the tendency of the body to maintain a state of equilib-
rium (e.g., hunger is balanced by eating). To this purpose, we identify the need
with the motivator (the need of food is identified with its motivator ‘hunger’)
and associate a numerical value with it. We consider two thresholds for the need,
an activation threshold α and a saturation threshold σ such that 0 < σ < α.

We can suppose that initially the value of the need, which in our example
is hunger, is below the α threshold. In this situation the motivator is inactive.
The passing of time makes the need increase as a function of the human activity.
When the need reaches the α threshold, the motivator becomes active. This
means that we must carry out the appropriate activity, driven by a goal, to
satisfy the need and, as a result, decrease its numerical value. Therefore, an
iterative activity is carried out until the need has dropped down to the saturation
threshold σ. Each step of the iterative cycle is driven by the goal and continues
while the need is greater than the saturation threshold σ. In our example, the
goal established in STM by an hungry person is eating (goal(eat)) and it drives
the deliberate behaviour of eating, which is modelled by cognitive rule 10 defined
in Sect. 3.1. Once the need is as low as the saturation threshold σ, the motivator
goes back to the inactive state.

Rule 10 models the cognitive aspects of hunger, that is, our deliberate eating
activity. However, there are several physiological aspects that control the feeling
of hunger and motivate us to eat and to stop eating. We use LTSs to model such
physiological aspects.

With reference to our example, the physiological motivation process can be
modelled using three transition rules:

activation [hunger > α, inactive] −→ [active]
This transition rule is enabled when condition hunger > α holds and the
motivator state is inactive. The transition changes the state to active.

iteration [hunger > σ, active]
goal(eat)↓−→ [active]

While condition hunger > σ , the motivator state is active and there is no
goal goal(eat) in STM, goal goal(eat) keeps being stored in STM.

saturation [0 ≤ hunger ≤ σ, active] −→ [inactive]
This transition rule is enabled when condition 0 ≤ hunger ≤ σ holds and
the motivator state is active. The transition changes the state to inactive.



Using Maude to Model Motivation in Human Behaviour 9

At the end of each iteration step of the physiological motivation process, the
execution of cognitive rule 10 causes action eat to be performed. Since action
eat is an argument of goal(eat), the goal is achieved and thus removed from
STM.

The physiological satisfaction process is determined by the feedback of the
eating activity, which decreases the feeling of hunger. By denoting such a decrease
by δ, we can model the satisfaction process as follows:

[hunger > σ]
eat−→ [hunger − = δ] (13)

This transition rule is enabled when condition hunger > σ holds and the tran-
sition occurrence decreases hunger by a quantity δ.

We note that physiological states, such as needs, are modelled as invisible
states since they are not directly visible from outside the LTS that models them.
What is visible is the resultant behaviour, for example the fact that we eat.

5 Translation into Maude

5.1 A Short Overview of Maude

Maude [16] is a formal modelling language and high-performance simulation
and model-checking tool for distributed systems. It makes use of (1) algebraic
equational specifications in a functional programming style to define data types,
and (2) rewriting logic specifications, expressed using rewrite rules, to define
the system evolution. Maude equational logic supports declaration of sorts, with
keyword sort for one sort, or sorts for many. A sort A may be specified as a
subsort of a sort B by subsort A < B.

Operators are introduced with the op (for a single definition) and ops (for
multiple definitions) keywords:

op f : s1 . . . sn -> s.
ops f1 f2: s1 . . . sn -> s.

Operators can have user-defined syntax, with underbars ‘_’ marking the argu-
ment positions and ‘‘’ to denote a space. Some operators can have equational
attributes, such as assoc, comm, and id, stating that the operator is associative,
commutative and has a certain identity element, respectively. Such attributes
are used by the Maude engine to match terms modulo the declared axioms. It is
possible to declare the same operator on various subsorts (subsort overloading).
In this case the ditto keyword may be used to specify the same equational at-
tributes used in the previous declaration of that operator. Equational attributes
pred and gather may be used to enforce precedence among operators. An op-
erator can also be declared to be a constructor (ctor) that defines the carrier
of a sort.

Axioms are introduced as equations using the eq keyword or, if they can be
applied only under a certain condition, using the ceq keyword, with the condition
introduced by the if keyword.



10 A. Cerone and O. Zhalgendinov

Variables used in equations are placeholders in a mathematical sense and
cannot be assigned values. They must be declared with the keyword var for one
variable, or vars for many. The use of the owise (or otherwise) equational
attribute in an equation denotes that the axiom is used for all cases that are not
matched by the previous equations.

Maude rewrite rules

rl [l]: t => t′ or crl [l]: t => t′ if cond

define local transitions from state t to state t′.
Core Maude supports the definition of functional modules, which start with

keyword fmod and end with keyword endfm, for algebraic equational specifica-
tions, and system modules, which start with keyword mod and end with keyword
endm, for rewriting logic specifications. All Core Maude statements, apart from
module definitions are ended by a dot. Modules can be imported using the key-
word protecting followed by the name of the module ended by a dot.

Core Maude also enables module reusability with parametrised modules, which
allow the use of such sorts as List, Map, and Maybe. These modules do not exist
on their own, but are generated dynamically depending on the value domain
for the elements of these sorts. The importation of the modules is performed by
defining a view from the Core Maude’s TRIV theory to a user-defined module
and mapping sort Elt to a sort that defines the value domain for the elements
of parametrized sorts.

One of the ways to check formal models in Maude is the search command:
search t =>* t′. This command finds all terms that satisfy term pattern t′ and
can be reached by applying rewrite rules any arbitrary number of times starting
from term t.

Full Maude is the object-oriented extension of Core Maude. It supports the
definition of classes and objects within object modules, which start with keyword
omod and end with keyword endom, and are enclosed between parentheses ‘(’ and
‘)’. In fact, all commands and modules must be entered enclosed in parentheses
when using Full Maude. A declaration class C | att1 : s1, . . . , attn : sn declares
a class C with attributes att1 to attn of sorts s1 to sn. An object of class C is
represented as a term <O : C | att1 : val1, ..., attn : valn > of sort Object, where
O, of sort Oid, is the object’s identifier, and where val1 to valn are the current
values of the attributes att1 to attn.

5.2 BRDL and LTS Syntax and Manipulation Operators

The Maude Syntax for the basic items introduced in Sect. 3, the BRDL cognitive
rules and the transitions that make up an LTS are defined in functional module
ENTITIES, whose contents are described in this section.

Basic items are defined by sort InfoItem. They are the building blocks for
cognitive rules, whose components are defined by the following sorts:

sorts InfoItem Goal Information ContentSTM ContentSTMList .

subsort String < InfoItem < Information .



Using Maude to Model Motivation in Human Behaviour 11

subsorts InfoItem Goal < ContentSTM .

subsorts ContentSTM Information < ContentSTMList .

Sort InfoItem includes strings (it has predefined sort String as a subsort),
and models the basic items introduced in Sect. 3. In fact, we have been model-
ing items of information as strings (possibly of multiple words) throughout the
paper.

We have seen in Sect. 3 that in the general form of cognitive rule

g : info1 ↑ perc =⇒ act ↓ info2

perc and act are basic items while info1 and info2 are sets of basic items, with
info2 possibly containing goals. Therefore, we define sorts Information, to model
info1 and ContentSTMList, to model info2, as follows:

op noInfo : -> Information [ctor] .

op _,_ : Information Information ->

Information [ctor comm assoc id: noInfo prec 10] .

op _,_ : ContentSTMList ContentSTMList -> ContentSTMList [ditto] .

with ContentSTMList further characterised by the subsort declarations above
stating that it has as subsort both ContentSTM (it may contain goals) and
Information (it may contain basic items). A goal is defined as

op goalFromAnyOf : Information -> Goal [ctor] .

and the general form of cognitive rule is modelled as follows:

sort CognitiveRule .

op _:_|>_==_=>_>|_ :

Goal Information InfoItem Parameter InfoItem ContentSTMList ->

CognitiveRule [ctor] .

Similar definitions of constructors, e.g., : |> == => >| , : |> == => >| and
: |> == => >| , model the cases in which one of the components of the cognitive

rule is missing.
Object module COGNITION defines operators established and enabling

to manipulate short-term memory (STM), whose content is modelled by the
ContentSTMList sort, and sort LTM to model long-term memory (LTM) as a set
of cognitive rules:

op established : Goal ContentSTMList -> Bool .

enabling : Information ContentSTMList -> Bool .

sort LTM . subsort CognitiveRule < LTM .

op emptyLTM : -> LTM [ctor] .

op _;_ : LTM LTM -> LTM [ctor comm assoc id: emptyLTM)] .

It also declares the class Cognition as follows

class Cognition | cognitiveLoad : Nat, stmCapacity : Nat,

shortTermMem : ContentSTMList, longTermMem : LTM .



12 A. Cerone and O. Zhalgendinov

where attribute stmCapacity is the maximum number of basic items that can
be in STM and cognitiveLoad models a number of additional items that are
assumed to be in STM but are not modelled explicitly.

In order to model LTSs that can interact with the human cognition, we define
a sort Event that characterises all events on which LTS and human cognition
can synchronise and a sort SystemState that comprises a visible component
consisting of the set of basic items and an invisible component consisting of a
set of basic items ‘hidden’ within a sort Invisible:

sorts Event Invisible SystemState SystemRule .

subsort InfoItem < Event .

op _|> : ContentSTM -> Event [ctor prec 11 gather (e)] .

op |>_>| : ContentSTM -> Event [ctor prec 12] .

op >|_ : ContentSTM -> Event [ctor prec 11 gather (e)] .

op [_] : Information -> Invisible [ctor] .

op __ : Information Invisible -> SystemState [ctor] .

op __--_->__ : Information Invisible Event Information Invisible

-> SystemRule [ctor] .

Operators |>, |> >| and >| define the mutual effects between transition rules
and STM, which are expressed in BRDL by info ↑, ↑ info ↓ and ↓ info respec-
tively. Thus an event is either defined by one of these three operators or is an
element of sort InfoItem, which is subsort of Event. The transition rules of the
LTS are modelled by sort SystemRule. Their Maude syntax closely reflects the
BRDL syntax presented in Sect. 3. The operator extSynch, which is defined as
follows

op extSynch : InfoItem InfoItem -> Bool .

vars S1 S2 : String .

eq extSynch(S1,S2) = S1 == S2 .

checks whether two basic items are made up by identical strings. We show in
Sect. 5.4 that this operator is used in rewrite rules to check whether the event
S2 of a transition is the same as the action S1 in a cognitive rule thus enabling
their synchronisation.

Object module LTS

(omod LTS is protecting ENTITIES .

op emptyLTS : -> LTS [ctor] .

op _;_ : LTS LTS -> LTS [ctor comm assoc id: emptyLTS] .

sort LTS . subsort SystemRule < LTS .

class System | currentState : SystemState, transitions : LTS .

endom)

defines the sort LTS as a set of transition rules by including SystemRule as a
subsort and defining the ‘;’ operator to construct the set. Class System defines
the LTS as the current state, which will be initialised by the initial state when
creating the object, and a set of transitions.

Finally, object module HUMAN

(omod HUMAN is protecting COGNITION + LTS + CONFIGURATION .

class Human | cognition : Oid, physiology : Oid .

endom)



Using Maude to Model Motivation in Human Behaviour 13

defines the human component as a combination of cognition and physiology.

5.3 Introducing Variables

Our previous BRDL translation into Maude [5, 8–10] does not make use of vari-
ables to define cognition and environment. This results in models with dupli-
cated cognitive rules and transitions, since each possible value of the same en-
tity requires a dedicated rule/transition. This problem also involves physiological
entities, such as hunger, whose value changes continuously controlled by the ac-
tivation and saturation thresholds.

Therefore, we extend the standard BRDL logic to match and apply LTS
transitions on information containing items with variable arguments. Variables
allow the use of placeholders in a transition to generalise integer values in the
current state of a system. This section describes how we map values from a
system state to variables in the left-hand side of a transition and how we generate
a new state from the right-hand side of the transition.

First, transitions with variables have a different matching logic. Therefore, we
introduce the GENERIC-ENTITIES module, which extends the ENTITIES module
to construct transitions from information containing variables. We declare a sort
GenericItem as an extension of the InfoItem sort. GenericItem defines infor-
mation items that may or may not contain variables. Similarly, the GenericInfo
sort is a supersort of Information containing both GenericItem and InfoItem.

Then we define a logic for matching variables. The variables operate by re-
placing actual values in the system state. Therefore, we first introduce a func-
tional module MATCHING to define basic concepts by using sorts Variable and
Value to represent placeholders and actual contained values, respectively. These
sorts are not populated in the module to support the use of any data types of
values and any format of variables. Then, a new sort Matching is introduced to
reflect the substitutions made when values are matched with variables:

sorts MatchingItem Matching Variable Value .

subsort MatchingItem < Matching .

op _:=_ : Variable Value -> MatchingItem [ctor prec 50] .

op noMatch : -> Matching [ctor] .

op _;_ : Matching Matching ->

Matching [ctor comm assoc id: noMatch prec 51] .

Finally, we define how the matching is constructed and how it is applied to the
given system state, left-hand side and right-hand side of a transition to generate
a new system state. Functional module GENERICS contains the definition of the
genericMatch operator to generate matching for transition application:

protecting (MAYBE * (op maybe to failMatch)){Matching} .

op genericMatch : Matching Information GenericInfo -> Maybe{Matching} .

This operator takes initial matching, current system information and the left-
hand side of a transition as arguments. The resulting sort Maybe{Matching}
means that the operator returns either a valid Matching of variables in a transi-
tion onto values in the system information or a term failMatch. This is defined



14 A. Cerone and O. Zhalgendinov

by the importation of parametrised module MAYBE with mapping of the maybe
operator onto failMatch. The operator is reduced according to the equation:

ceq genericMatch(MATCH, (INFOITEM, INFO), (ITEM, GENERIC))

= matchItem(MATCH, INFOITEM, ITEM);

genericMatch((MATCH); matchItem(MATCH, INFOITEM, ITEM), INFO, GENERIC)

if matchItem(...) :: Matching /\ genericMatch(...) :: Matching .

The equation defines the information matching by applying matchItem on pairs
of generic items ITEM on the left-hand side of a transition and information items
INFOITEM in the system state. The condition ensures that this equation is applied
only if matchItem of all pairs of items produce valid matchings. Otherwise, a
different order of items will be considered because the information is a set and
any item can match ITEM and INFOITEM.

The resolveGeneric operator transforms the system state depending on the
generated matching and right-hand side of the transition:

protecting (MAYBE * (op maybe to failResolve)){Information} .

op resolveGeneric : Matching GenericInfo -> Maybe{Information} .

The operator constructs the values of the information resulting from transition
application by using resolveItem to substitute variables in each generic item
and by appending it to the rest of the substitutions.

As we noticed in Sect. 4.2, variables may be uses within either conditions
in the left-hand side of a transition or assignments in the right-hand side of a
transition. This is implemented by the following sort and operator declarations:

sorts Condition ValueExpr GenericExpr .

subsort ValueExpr Variable < GenericExpr < GenericArgument .

subsort Value < ValueExpr < ExactArgument .

op _given_ : GenericExpr Condition -> GenericArgument .

op _’-_ : GenericExpr GenericExpr -> GenericExpr [prec 33 gather (E e)] .

op _’+_ : GenericExpr GenericExpr -> GenericExpr [prec 33] .

The operators ’+ and ’- contain a quote symbol to avoid conflicts with prede-
fined operators for numbers, a common approach used in Maude [1].

As examples of use of variables, transition 12 introduced in Sect. 4.2 is trans-
lated to Maude code as

"requested pin" [ pinAttempts(a given a ’== 1) ] -- "enter pin" ->

"confiscated card" [ pinAttempts(a ’+ 1) ]

and transition 13 introduced in Sect. 4.3 is translated to Maude code as

noInfo [ hunger(a given a ’> 0) ] -- "eat" -> noInfo [ hunger(a ’- 1) ]

5.4 Rewrite Rules

The evolution of the Maude model is defined by the GENERIC-EVOLUTION system
module, which consists of the following rewrite rules:



Using Maude to Model Motivation in Human Behaviour 15

crl [GENERIC_SYSTEM_EVOLUTION] :

< TS : System | currentState : (INFO1, INFO3 [ INV1 , INV3 ]),

transitions : (INFO2 [ INV2 ] -- auto -> INFO4 [ INV4 ]) ; TRANS >

=>

< TS : System | currentState :

(resolveState( INFO1, INFO2, INFO4 ), INFO3

[ resolveState( INV1, INV2, INV4 ) , INV3 ]),

transitions : (INFO2 [ INV2 ] -- auto -> INFO4 [ INV4 ]) ; TRANS >

if checkState( INFO1, INFO2, INFO4 ) /\ checkState( INV1, INV2, INV4 )

Fig. 1. Rewrite Rule for autonomous system evolution.

GENERIC SYSTEM EVOLUTION which is shown in Fig. 1, defines the autonomous
evolution of a system modelled by an LTS that does not interact with a hu-
man component. The full definition of the System class of module LTS is given
in Sect. 5.2. The rewrite rule checks whether in the LTS TS there is a tran-
sition whose source state INFO2 [ INV2 ] matches the current state (with
TRANS being the rest of the transitions) using the checkState operator and,
if the matching is found, performs the transition using the resolveState

operator to change the current state. Each of these two operators is applied
separately to the invisible and visible parts of the current state and exploits
the operators genericMatch and resolveGeneric discussed in Section 5.3
to respectively generate a valid Matching from mapping values INFO1 and
INV1 onto generic INFO2 and INV1, respectively, and successfully resolve all
variables in INFO4 and INV4.

GENERIC PHYSIOLOGY REMOVES INFO which is shown in Fig. 2, is one of the
three rewrite rules that define the interaction of cognition with physiology.
This rewrite rule defines the effect of operator info |>, which implements
info ↑. The definitions of Human, Cognition are given in Section 5.2. If item
CONTENTSTM1 is in STM, then the rule is applied to a transition with event
CONTENTSTM1 |> by removing CONTENTSTM1 from STM and performing the
transition as in rewrite rule GENERIC SYSTEM EVOLUTION.

GENERIC PHYSIOLOGY ADDS INFO defines the effect of operator >| info, which
implements ↓ info, by adding item info to STM and performing the matching
transition as in rewrite rule GENERIC SYSTEM EVOLUTION.

GENERIC PHYSIOLOGY READS STM defines the effect of operator |> info >|, which
implements ↑ info ↓, by checking whether item info is in STM without chang-
ing the contents of STM and performing the matching transition as in rewrite
rule GENERIC SYSTEM EVOLUTION.

GENERIC EXTERNAL SYNCHRONIZATION defines the interaction between a human
component and an external environment, such as user interfaces. It imple-
ments the synchronisation process described in Sect. 4.2.

GENERIC ACTION defines the interaction between a human component and an
external environment without any human perception of the state of the en-
vironment.



16 A. Cerone and O. Zhalgendinov

crl [GENERIC_PHYSIOLOGY_REMOVES_INFO] :

< H : Human | cognition : CO, physiology : PHY >

< CO : Cognition | cognitiveLoad : CL, stmCapacity : CAP,

shortTermMem : (STMEM); CONTENTSTM1,

longTermMem : LTMEM >

< PHY : System | currentState : INFO1, INFO3 [ INV1 , INV3 ],

transitions :

(INFO2 [ INV2 ] -- (CONTENTSTM1 |>) -> INFO4 [ INV4 ]) ; TRANS >

=>

< H : Human | cognition : CO, physiology : PHY >

< CO : Cognition | cognitiveLoad : CL, stmCapacity : CAP,

shortTermMem : (STMEM),

longTermMem : LTMEM >

< PHY : System | currentState :

(resolveState( INFO1, INFO2, INFO4 ), INFO3

[ resolveState( INV1, INV2, INV4 ) , INV3 ]),

transitions :

(INFO2 [ INV2 ] -- (CONTENTSTM1 |>) -> INFO4 [ INV4 ]) ; TRANS >

if CL + load(STMEM) <= CAP

/\ checkState( INFO1, INFO2, INFO4 ) /\ checkState( INV1, INV2, INV4 )

Fig. 2. Rewrite Rule for a physiology removing information from STM.

6 Conclusion and Future Work

We have extended our framework for modelling and analysing human reasoning
and behaviour [6, 7] with a generalised notion of goal, which allows the choice
between alternative achievements. For example, this allows a user interacting
with an interface to consider the task completed either by succeeding or aborting.
This means to address level-2 psychological needs by safely aborting the task
when a danger or threat is perceived.

We also translated into Maude the formal framework for emotions and moti-
vators defined in previous work [6, 7] by incorporating it in the previous BRDL
translation [5, 8–10] and further generalising it with the introduction of variables.

The BRDL translation into Maude defined in this paper has been used to
model and analyse the user task defined in Sect. 3.1. We used Maude model-
checking capabilities to verify that the absence of level-1 needs results in a
safer choices that meet level-2 needs. Starting from the initial cognitive state
goal(collect food, abort collect food), which addresses level-2 needs, we can ver-
ify that the card is confiscated only when the user is hungry. We use Maude
search command to find a counterexample to this property. The searched term
models a vending machine state that contains the confiscated card basic item
and a physiology state that contains inactive hunger item. The result of the



Using Maude to Model Motivation in Human Behaviour 17

search given by Maude is No solution, thus verifying property. The Maude
code of the example can be downloaded from GitHub1.

Although it was not described in this paper for space reasons, the extension of
the Maude translation supports the generation of emotion defined using BRDL
and LTSs in our previous work [7]. In our future work we are planning to model
the effect of generated emotion on motivation and decision making.

References

1. Alpuente, M., Ballis, D., Romero, D.: A rewriting logic approach to the formal
specification and verification of web applications. Science of Computer Program-
ming 81, 79–107 (2014)

2. Anderson, K.L.: Arousal and the inverted-uy hypothesis: Aq critique of nessiss’s
“reconceptualizing arousal”. Psychological Bullettin 17, 96–100 (1990)

3. Cannon, W.B.: The Wisdom of the Body. Norton (1932)
4. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of

interactive systems. In: Software Engineering and Formal Methods (SEFM 2016),
pp. 287–303. No. 9763 in Lecture Notes in Computer Science, Springer (2016)

5. Cerone, A.: Towards a cognitive architecture for the formal analysis of human
behaviour and learning. In: STAF collocated Workshops 2018 (FMIS), pp. 216–
232. No. 11176 in Lecture Notes in Computer Science, Springer (2018)

6. Cerone, A.: Behaviour and reasoning description language (BRDL). In: SEFM 2019
Collocated Workshops (CIFMA), Lecture Notes in Computer Science, vol. 12226,
pp. 137–153. Springer (2020)

7. Cerone, A.: A BRDL-based framework for motivators and emotions. In: SEFM
2023 Collocated Workshops (CIFMA), Lecture Notes in Computer Science, vol.
13765, pp. 351–365. Springer (2023)

8. Cerone, A., Murzagaliyeva, D.: Information retrieval from semantic memory:
BRDL-based knowledge representation and Maude-based computer emulation. In:
SEFM 2020 Collocated Workshops (CIFMA), Lecture Notes in Computer Science,
vol. 12524, pp. 150–165. Springer (2021)

9. Cerone, A., Ölveczky, P.C.: Modelling human reasoning in practical behavioural
contexts using Real-Time Maude. In: FM’19 Collocated Workshops - Part I
(FMIS), Lecture Notes in Computer Science, vol. 12232, pp. 424–442. Springer
(2020)

10. Cerone, A., Pluck, G.: A formal model for emulating the generation of human
knowledge in semantic memory. In: Proc. of DataMod 2020, Lecture Notes in
Computer Science, vol. 12611, pp. 104–122. Springer (2021)

11. Hull, C.L.: Principles of Behaviour. Appleton-Century-Crofts (1943)
12. Hull, C.L.: A behaviour system: An introduction to behaviour theory concerning

the individual organism. Yale University Press (1952)
13. James, W.: Psychology. Holt (1890)
14. Maslow, A.H.: A theory of human motivation. Psychological Review 50, 370–396

(1943)
15. Maslow, A.H.: Motivation and Personality. Harper, 2nd edn. (1970)
16. Ölveczky, P.C.: Designing Reliable Distributed Systems. Undergraduate Topics in

Computer Science, Springer (2017)

1 https://github.com/AntonioCerone/Publications/tree/master/2023/CIFMA



18 A. Cerone and O. Zhalgendinov

17. Solomon, R.L.: The opponent-process theory of motication: The costs of pleasuree
and the banefits of pain. American Psychologist 35, 681–712 (1980)

18. Woodworth, R.S.: Dynamic Psychology. Columbia University Press (1918)
19. Yerkes, R.M., Dodson, J.B.: The relation of strength of stimulus to rapidity of

habit formation. Journal of Comparative Neurology and Psychology 18, 459–482
(1908)


