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Abstract. In this paper, we present a logic FPL to reason about prob-
abilities with a relative frequency interpretation. We show that it is pos-
sible to interpret the language of FPL with the standard semantics for
propositional logic. FPL can give a peculiar frequentist interpretation
of a probability operator. We then give a proof system for the language,
prove that the traditional theorems of probability hold, and prove sound-
ness and completeness.
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1 Introduction

Probability is important to every human endeavour which involves quantitative
data analysis. Moreover, it is safe to claim that probability theory can be con-
sidered the best formal tool researchers have to represent uncertainty. From a
mathematical standpoint, probability theory is a rigorous and thoroughly stud-
ied theory with precise axioms and proven theorems. Thus, it makes sense to try
and combine logic and probability, the former providing a qualitative perspective
over human reasoning and the latter providing the quantitative analysis [4].

One potential issue with all the formalizations of probability logic is that
interpretations of probability are often left tacit; they provide the formal frame-
work and the user applies its preferred interpretation. Although it is true that,
as far as an interpretation is consistent with the axioms of probability theory,
applying such interpretation to whatever probability logic does not change the
characteristics of the logic, it is also true that some interpretations allow for a
more fine-grained analysis of why a specific event has a given probability in the
first place. For instance, saying that the probability of a fair coin landing heads
is 1

2 is not affected by the interpretation you give to the fraction 1
2 . However,

showing that such probability follows from the fact that a coin landed heads
twice out of four tosses adds some depth to our understanding of why the prob-
ability is 1

2 . This last example is an instance of a frequentist interpretation of
probability [9] and is extensively employed in scientific settings to establish the
probability of different events.

Moreover, a logic that can explicitly capture the idea of relative frequency and
that can allow reasoning about probability under said interpretation can become
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extremely useful in context of statistical and approximate model checking [10,
8] and of probabilistic verification of machine learning [7, 11, 12].

Statistical model checking refers to techniques which are employed in com-
puter science to check properties of stochastic systems. Differently from Boolean
model checkers, which establish whether a property is reached or not in a model
of a system, statistical model checkers start from the assumption that exhaus-
tively exploring all paths of a model might not always be feasible and, thus,
quantitative questions should be asked rather than qualitative one. For exam-
ple, a statistical model checker would look for answers to questions such as: is
the probability that the system satisfies a certain property greater than a certain
threshold?

In a similar way, the logic here proposed could be employed to construct
sophisticated reinforcement learning strategies for machine learning. Reinforce-
ment learning is based on the idea that whenever a classifier gets an answer
wrong, it get punished, while it gets a prize whenever the classification is cor-
rect. However, we might want to cluster sets of answers together and punish only
classifications that fall below certain thresholds that we have chosen as appropri-
ate. This might thus allow those systems to create appropriate strategies that,
although not perfect, might still be useful in contexts in which fuzzy evaluations
are sufficient to make the best decision.

The logic presented in this paper allows computer scientists to represent and
reason in those contexts with ease and thus represent valuable tools in the hands
of the right modeller.

The aim of the paper is to enrich the semantics of standard probability logic
by capturing explicitly a frequentists interpretation of probability. In particu-
lar, we will start from Fagin’s et al. [5] Probability Logic and apply to it a
frequentist semantics. Moreover, we will enrich the language by allowing com-
binations of propositional and probabilistic formulas, thus allowing an agent to
reason about the relationship between local and global results (Section 3). We
will then show that all meta-theoretic results from [5] hold for our semantic
structures (Section 4) and we will discuss some future works that make our se-
mantics an interesting evolution which might be of interest to computer scientists
(Section 5).

2 Related Works

To the best of our knowledge, the works that mostly resemble our approach
are those on counting propositions [3] and those on graded modal logics [6].
The former family of works present formal semantics to reason about how many
times a specific proposition is true in a model. The general idea presented in
those works is really similar to our, with the only distinction being the lack
of connections to probability and its theorems. In this paper, we extend the
analysis carried out by those authors by separating the truth of a proposition
from its probability (thus capturing an intrinsic notion of uncertainty) and by
constructing all the bridges between such formalism and probability logic. On
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the other hand, graded modal logic offers a way to quantify the uncertainty
about the application of specific modal operators to formulas. When such modal
operators are interpreted to stand from probability, the connection with our
proposal becomes obvious. However, in graded modal logics a relational structure
must be assumed, which is not strictly necessary in our semantics. In particular,
we claim that graded modal logics might offer a subjective interpretation (due
to the accessibility relations) of an objective interpretation of probability (due
to the counting of true instances of a proposition in the structure). We offer
a completely objective interpretation, creating a stronger tie with probability
theory and the reasoning thereof.

3 Frequentist Probability Logic

3.1 Syntax

Take a countable set of primitive atomic formulas At ranging over pi, with i ∈ N.
We will also assume that a, b range over the set Z.

Definition 1 (Language of FPL). The language LFPL ranging over χi, with
i ∈ N is generated recursively by the following three-level grammar, with ⊙ ∈ {≥
,≤} and ◦ ∈ {+,−}:

χ := φ | ψ | ¬χ | χ ∧ χ
ψ := P (φ)⊙ b | P (φ) ◦ P (φ)⊙ b

φ := ⊤ | pi | ¬φ | φ ∧ φ

The elements of LFPL are called formulas. Specifically, the φis will be called
propositional formulas, while the ψis will be called probabilistic formulas. Finally,
the χis will be simply called formulas.

The following definitions will be employed throughout the paper:

Definition 2 (Defined formulas).

– ⊥ := ¬⊤;
– φi ∨ φj := ¬(¬φi ∧ ¬φj);
– φi → φj := ¬φi ∨ φj;
– φi ↔ φj := (φi → φj) ∧ (φj → φi);

1

– P (φi)⊙ P (φj) := (P (φi)− P (φj))⊙ 0;
– P (φ) = b := P (φ) ≥ b ∧ P (φ) ≤ b;
– P (φ) > b := ¬(P (φ) ≤ b);
– P (φ) < b := ¬(P (φ) ≥ b).

Example 1. Imagine that Alice wants to draw some conclusions about a Monte
Carlo simulation she ran over throwing two dice. For the purpose of this example,
she will only focus on the outcomes of the dice that correspond to three (it is
not hard to expand the example, but to keep the example simple, we will limit

1 The same abbreviations will also be employed for the χi formulas.
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ourselves to the case mentioned). Thus, the important propositions that Alice is
interested in are p13 which stands for “the outcome of the throw of die 1 is 3”,
and p23 which stands for “the outcome of the throw of die 2 is 3”. Inside FPL,
Alice could then reason about formulas such as “both dice landed on the value
3” (p13∧p23); “whenever die one landed on three, die two did not” (p13 → ¬p23);
“the relative frequency of die one landing three is 1

6” (P (p13) =
1
6 ); “the relative

frequency of die one landing three is lower than 1
10” (P (p13) <

1
10 ).

3.2 Semantics

To define the semantics of FPL, we first introduce Frequentist Models.

Definition 3 (Frequentist Models). A frequentist model is a couple M =
(O, v), where O is a non-empty finite set of possible outcomes ranging over oi
with i ∈ N, and v is a valuation function v : O ×At→ {0, 1}.

Intuitively, an outcome oi ∈ O can be seen as a valuation of all the atomic for-
mulas of the language. Those outcomes could also be interpreted as experiments
(or Montecarlo simulations) in which the atomic formulas are tested in order
to verify whether they hold or not. The valuation function, on the other hand,
indicates the results of the evaluations/experiment, indicating which formulas
turned out to be true.

Example 2. We continue from Example 1. In order to evaluate the formulas Alice
is interested in, she can perform a Monte Carlo simulation, throwing the two dice
repeatedly and keeping track of the results. Imagine that Alice threw the two dice
30 times. The 30 throws performed by Alice would constitute the setO of possible
outcomes. Moreover, the valuation function v would be equivalent to the notes
that Alice made about the specific outcomes of the throws. Imagine that out of
the 30 throws, die one landed on three five times (e.g., on throws one, three,
eight, fourteen, twenty-seven), while die two landed on three on ten different
occasions (e.g., on throws two, four, six, eleven, fourteen, sixteen, twenty-two,
twenty-three, twenty-eight, and thirty). Formally, this would be captured by a
model M where O = {oi | 1 ≤ i ≤ 30}, and v would be defined as follows (we
will only specify the cases in which the formulas are true):

– v(o1, p13) = v(o3, p13) = v(o8, p13) = v(o14, p13) = v(o27, p13) = 1;
– v(o2, p23) = v(o4, p23) = v(o6, p23) = v(o11, p23) = v(o14, p23) = v(o16, p23) =
v(o22, p23) = v(o23, p23) = v(o28, p23) = v(o30, p23) = 1.

It is fairly easy to extend the valuation function to all propositional formulas
φ through induction over the structure of the formulas:

Definition 4 (Extended Valuation). Given a frequentist model M, the val-
uation function v is extended to all the propositional formulas recursively as
follows (we use ve to indicate the extension of v):

– ve(oi, pj) = v(oi, pj);
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– ve(oi,¬φ) = 1 iff ve(oi, φ) = 0;
– ve(oi, φj ∧ φm) = 1 iff ve(oi, φj) = 1 and ve(oi, φm) = 1.

Valuation functions do not apply to probability formulas. Since we are not
allowing the nesting of probability operators, this will not constitute a problem.

Definition 5 (Validating Sets). Given a frequentist model M, the validating
set of a propositional formula φ, indicated with JφK, is a subset of O (JφK ⊆ O)
s.t. oi ∈ JφK iff ve(oi, φ) = 1.

Example 3. Given our example, the validating sets for propositions p13 and p23
would be, respectively:

– Jp13K = (o1, o3, o8, o14, o27);
– Jp23K = (o2, o4, o6, o11, o14, o16, o22, o23, o28, o30).

The validating set of a formula, sometimes referred to as the truth set of the
formula, simply indicates the set of outcomes where the formula is true.

Proposition 1 (Properties of Validating Sets). Given a validating set JφK,
the following properties follow:

– J¬φK = O \ JφK;
– Jφj ∧ φmK = JφjK ∩ JφmK.

Proof. The proof follows directly from definitions 4 and 5.

Definition 6 (Validating Space). The validating space VM of a model M,
is the set of all validating sets of propositional formulas of the language LFPL:

VM = {JφK | φ ∈ LFPL} (1)

Proposition 2. Given a frequentist model M, the validating space VM forms a
σ-algebra over O ∈ M.

Proof. Take an arbitrary model M = (O, v). First note that by definitions 6
and 5, it follows that VM is a set of subsets of O. Since ⊤ ∈ LFPL and J⊤K = O,
it follows that O ∈ VM.

Assume that JφK ∈ VM. Since LFPL is closed under negation, i.e., if φ ∈
LFPL, then ¬φ ∈ LFPL, it follows that J¬φK ∈ VM. By proposition 1, J¬φK = O\
JφK, which is the complement of JφK. Therefore, VM is closed under complement.

Assume that JφiK ∈ VM and that JφjK ∈ VM. Since LFPL is closed under
disjunction (through definition 2), i.e., if φi ∈ LFPL and φj ∈ LFPL, then
φi ∨ φj ∈ LFPL, it follows that Jφi ∨ φjK ∈ VM. Through set operations and
proposition 1, Jφi∨φjK = JφiK∪JφjK. Therefore, VM is closed under finite union.

From the previous four properties, it follows that VM forms an algebra over
O ∈ M.

Moreover, since O is finite, VM is also a σ-algebra over O, since countable
union collapses onto finite union.
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In the following definitions, we will indicate with |O|, and |JφK| the cardinality
of, respectively, the outcomes set and the validating set.

Definition 7 (Relative Frequency Function). Given a model M, it is pos-
sible to define a relative frequency function τ that assigns to every proposi-
tional formula of the language its relative frequency. The assignment procedure

for τ is defined as follows: τ(φ) = |JφK|
|O| .

Definition 8 (Probability Measure). Given a set S of states and a σ-algebra
X of measurable sets Xi, a probability measure is a function µ which takes as
arguments the measurable sets and returns as values a number from [0, 1] ∈ Q.
Moreover, a probability measure satisfies the following properties:

– µ(Xi) ≥ 0, for all Xi ∈ X ;
– µ(S) = 1;
– If Xi ∩Xj = ∅, then µ(Xi ∪Xj) = µ(Xi) + µ(Xj).

The triple (S,X , µ) is called a probability space.

Remark 1. Given a frequentist model M, the triple (O,VM, τ) is a probability
space.

In the semantics of FPL, formulas are interpreted over frequentist models.
Propositional formulas will be interpreted locally, while probability formulas will
be interpreted globally over the whole model. In particular, the semantics of the
operator P (·) is given in terms of the relative frequency function τ(·).

Definition 9 (Truth of propositional formulas). Let φ ∈ LFPL be a propo-
sitional formula and M = (O, v) be a frequentist model. We inductively define
the notion of φ being verified (or satisfied) by an outcome oi ∈ O in M, written
oi |=M φ, as follows:

1. oi |=M ⊤, always;
2. oi |=M pj iff ve(oi, pj) = 1;
3. oi |=M ¬φ iff oi ̸|=M φ;
4. oi |=M φj ∧ φm iff oi |=M φj and oi |=M φm.

Definition 10 (Truth of probability formulas). Let ψ ∈ LFPL be a prob-
ability formula, χ ∈ LFPL a general formula, and M = (O, v) be a frequentist
model. We inductively define the notion of ψ (or χ) being verified (or satisfied)
by an outcome oi ∈ O in M, written oi |=M ψ (the same notation applies to χ),
as follows:

5. oi |=M P (φ)⊙ b iff τ(φ)⊙ b;
6. oi |=M P (φj) ◦ P (φm)⊙ b iff τ(φj) ◦ τ(φm)⊙ b;
7. oi |=M ¬χ iff oi ̸|=M χ;
8. oi |=M χj ∧ χm iff oi |=M χj and oi |=M χm.2

2 Note that if χ has no occurrences of probability formulas inside of it, then the truth
definition collapses onto that of propositional formulas.
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The semantic interpretation of the operation signs + (addition) and − (sub-
traction) is the standard one from arithmetic as is that of the inequality/equality
signs. It is easy to notice that in the truth definition of probability formulas, the
specific outcome chosen plays no role (i.e., there is no difference in evaluat-
ing a probability formula ψ in o1 or in o2, whatever the outcomes say). This
is perfectly reasonable, since we already said that the probability formulas are
evaluated globally, rather than locally. Therefore, whenever a probability for-
mula is satisfied at a pointed frequentist model, it is satisfied in all the model.
We kept the notation of pointed models for probability formulas for coherence
of notation and to more easily transition to general formulas χs. Note that for
a χ formula, the valuation must be taken at a pointed model, since they might
contain propositional formulas as their elements, which would then have to be
evaluated locally.

Remark 2. Note that by simply dropping the probabilistic formulas from the
language, the resulting language is that of propositional logic. Indeed, the se-
mantics is also that of propositional logic, where the couples (O, v) can be seen as
truth assignment to atomic formulas. This implies that, strictly speaking, FPL
expands the expressivity of propositional logic maintaining the same semantics
elements of it.

Example 4. We are now in a position to show how Alice could evaluate her for-
mulas. Recall that Alice was interested in those propositions: “both dice landed
on the value 3” (p13∧p23); “whenever die one landed on three, dice two did not”
(p13 → ¬p23); “the relative frequency of die one landing three is 1

6” (P (p13) =
1
6 );

“the relative frequency of die one landing three is lower than 1
10” (P (p13) <

1
10 ).

As should be expected, for the propositional propositions that Alice is asking,
it must be specified which specific trial she has in mind. However, for the prob-
ability propositions, her evaluations should be global, again, as expected. In
particular, in FPL, it is easy to show that p13 ∧ p23 is satisfied only by outcome
o14, i.e., o14 |=M p13 ∧ p23. At the same time, it is always false that p13 → ¬p23.
Moreover, it happens to be true in the model we constructed that P (p13) =

1
6 ,

i.e., |=M P (p13) =
1
6 , while it is false that P (p13) <

1
10 .

Definition 11 (Validity of propositional and probability formulas). A
propositional formula φ is said to be satisfiable in a frequentist model
M = (O, v) iff ∃oi ∈ O such that oi |=M φ. A propositional formula φ is
said to be valid in a frequentist model M = (O, v) (in symbols, |=M φ) iff
∀oi ∈ O ∈ M, oi |=M φ. For a probability formula, as already mentioned, sat-
isfiability and validity in a model collapse, since the valuation of a probability
formula ψ is global on the model. Thus, a probability formula ψ is said to be
valid in a frequentist model M = (O, v) iff |=M ψ. A formula χ retains the
same definitions of a propositional formula, with the distinction that whenever
χ only contains probability formulas, then satisfiability collapses onto validity in
a model.

Proposition 3 (Relation between validity and satisfiability). A proposi-
tional formula φ is valid iff its negation is not satisfiable in a frequentist model.
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Moreover, a probability formula ψ is valid iff its negation is not valid in a fre-
quentist model.

Proof. Assume that a propositional formula φ is valid. This is equivalent to the
fact that the formula is satisfied in every outcome oi of every model M. Take an
arbitrary model M and an arbitrary outcome oi ∈ O ∈ M. Take the negation
of φ, i.e., ¬φ. To satisfy such formula, it must hold that oi |=M ¬φ, which, by
definition, means that oi ̸|=M φ. However, by assumption, we know that there
is no oi s.t. oi ̸|=M φ, thus there is no oi s.t. oi |=M ¬φ.

For probability formula the argument is similar, with the difference being
that validity in a model is taken into consideration instead of satisfiability. This
is due to the fact that probability formulas are evaluated globally on the model
and not at a specific outcome.

An example of a valid formula in FPL would be P (φ) ≥ 1
2 → P (φ) ≥ 1

4 .

Proposition 4. The following two sentences are equivalent, where φ is a propo-
sitional formula:

(a) |= φ;
(b) |= P (φ) = 1.

Proof. Take an arbitrary model M = (O, v).
(From a to b). Assume that |= φ. It therefore follows, by definition 11,

that ∀oi ∈ O, oi |=M φ. By definition 9, that ∀oi ∈ O, ve(oi, φ) = 1. The

validating set JφK is therefore equivalent to O, from which it follows that |JφK|
|O| =

1, which in turn implies |JφK|
|O| = 1. This is the definition of |=M P (φ) = 1, via

definition 10. Since the model M was taken arbitrarily, this holds for all possible
models chosen.3

(From b to a). Assume that |=M P (φ) = 1. It follows, by definition 10, that
|JφK|
|O| = 1, i.e., |JφK| = |O|. By definition 5, JφK ⊆ O. Since O is finite, the only

possible case in which the two conditions JφK ⊆ O and |JφK| = |O| are both true
at the same time is when JφK = O. From such equality and definition 5, it follows
that ∀oi ∈ O, ve(oi, φ) = 1, which, by definition 9, means that ∀oi ∈ O, oi |=M φ.
Finally, by definition 11, this means that |=M φ. Since the model M was taken
arbitrarily, this holds for all possible models chosen.4

3.3 Axiomatic system for FPL

We will now provide an axiomatic system for FPL. We will then show that such
axiomatic system is sound and complete with respect to frequentist models.

3 Technically, both P (φ) and 1 should be qualified with a coefficient a. However,
multiplying both for the same number, would not change the result of the valuation,
thus the formula would be still valid for any a chosen.

4 Note that it is assumed in FPL that O is finite. While using an infinite O would
not change the a to b it might indeed make the b to a direction false.
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Definition 12 (Frequentist Probability Logic). A frequentist probabil-
ity logic (FPL) is a set Λ ⊆ LFPL containing (i) all propositional tautologies,
(ii) all the substitution instances of valid formulas about linear inequalities, (iii)
all the substitution instances of the following axiom schemata, for φ,ψ ∈ LFPL:

Ax. 1 P (φ) ≥ 0;
Ax. 2 P (⊤) = 1;
Ax. 3 If ¬(φi ∧ φj), then P (φi ∨ φj) = P (φi) + P (φj);

5

Ax. 4 If (φi ↔ φj), then P (φi) = P (φj).

Λ is also closed under Modus Ponens (MP).

Instances of (i) formalize reasoning about propositional formulas and Boolean
combinations between formulas (either propositional or probability formulas or a
mix of the two); instances of (ii) formalize reasoning about formulas of the form
P (φi)◦P (φj)⊙b, where the P (φ)s can be seen as variables in the inequalities. A
formula about linear inequality is valid only if every numerical assignment to the
variables in the inequality. i.e., the τ(φ) of the P (φ)s appearing in the inequality,
satisfy the inequality. Ax. 1 states that probability formulas can never receive a
negative value. Ax. 2 states that the probability of a tautology is always 1 (see
also proposition 4). Ax. 3 captures the idea of finite additivity of probability
theory; this axiom is also what creates the connection between P (φ) ◦ P (φ)⊙ b
formulas and P (φ)⊙ b formulas (i.e., it is an interaction axiom between simple
probability formulas and linear combinations of them). Ax. 4 captures the idea
that equivalent formulas should have the same probability.

Definition 13. We say that a formula χ is provable in Λ (⊢Λ χ) iff the formula
is an instance of an axiom schema in Λ or is obtained through the application
of MP to formulas already proven. A formula χ is derivable in Λ from a set of
premises Γ (Γ ⊢Λ χ) iff the formula is an instance of an axiom schema in Λ, is
an instance of a formula contained in Γ , or is obtained through the application
of MP to formulas already derived or proven.

We say that a formula χ is inconsistent if its negation ¬χ is provable
(⊢Λ ¬χ). A formula is consistent otherwise.

3.4 Probability Theorems

We will now show that the main theorems from probability theory can be proven
in FPL. We will provide semantic proofs rather than syntactic ones. Our choice
is justified by the fact that the major novel contribution to the literature of FPL
is semantic in nature, rather than syntactic. For convenience, we also provide
syntactic proofs in the appendix of this paper.

Theorem 1 (Probability of ⊥).

5 Finite additivity could also be expressed by the formula P (φi) = P (φi ∧ φj) +
P (φi ∧ ¬φj). This fact is important since we will use this formulation in our proof
of completeness.
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|= P (⊥) = 0

Proof. Take an arbitrary model M and an arbitrary outcome oi ∈ O ∈ M. By
definition 2, ⊥ := ¬⊤, and by definition 9, ⊤ holds for every oi ∈ O ∈ M. By
definition 5, it follows that J⊤K = O. By definition 1, it follows that J⊥K = O\J⊤K.
By substitution, it follows that J⊥K = ∅. Therefore, τ(⊥) = |∅|

|O| . Whatever the

cardinality of O is, the cardinality of ∅ is zero. It follows that τ(⊥) = 0, which
means that P (⊥) = 0 holds. Since the outcome and the model were chosen
arbitrarily, the results holds for any outcome and any model.

Theorem 2 (Finite Additivity).

If |= ¬(φi ∧ φj), then |= P (φi ∨ φj) = P (φi) + P (φj)

Proof. Take an arbitrary model M. Assume that |= ¬(φi ∧ φj), thus, in partic-
ular, |=M ¬(φi ∧ φj). This means that for each oi ∈ O ∈ M, either oi /∈ JφiK or
oi /∈ JφjK. By definition 10, P (φi ∨ φj) = b iff τ(φi ∨ φj) = b. By definition 7,

τ(φi ∨ φj) =
|Jφi∨φjK|

|O| . By proposition 1, it follows that Jφi ∨ φjK = JφiK ∪ JφjK.
This implies that |Jφi ∨ φjK| = |JφiK ∪ JφjK|. By the initial assumption, it fol-
lows that JφiK ∩ JφjK = ∅. Thus, every oi ∈ JφiK ∪ JφjK contributes only once
to the cardinality of |JφiK ∪ JφjK|, and coming from just one of the sets JφiK
or JφjK. This implies that |JφiK ∪ JφjK| = |JφiK| + |JφjK|. By substitution, it

follows that τ(φi ∨ φj) =
|Jφi∨φjK|

|O| =
|JφiK|+|JφjK|

|O| . By splitting the fraction,

it follows that τ(φi ∨ φj) = |JφiK|
|O| +

|JφjK|
|O| . By definition 10, it follows that

P (φi ∨ φj) = P (φi) + P (φj). Since the model M was chosen arbitrarily, this
holds for every model.

Theorem 3 (Probability of Negation).

|= P (¬φ) = 1− P (φ)

Proof. Take an arbitrary model M and an arbitrary outcome oi ∈ O ∈ M.
Take the tautology φ ∨ ¬φ. Given the fact that it is a tautology, it follows that
|= (φ ∨ ¬φ). By proposition 4, it follows that |= P (φ ∨ ¬φ) = 1. It also holds
that |=M ¬(φ∨¬φ). By theorem 2, it follows that P (φ∨¬φ) = P (φ) + P (¬φ).
By substitution, it follows that P (φ) + P (¬φ) = 1. By algebra, it follows that
P (¬φ) = 1 − P (φ). Since the model and the outcome were chosen arbitrarily,
this holds for any outcome and any model.

Theorem 4 (Probability of Equivalence).

If |= φi ↔ φj, then |= P (φi) = P (φj)

Proof. Take an arbitrary model M. Assume that |=M φi ↔ φj . From the as-
sumption, it follows that JφiK = JφjK (if the formulas are satisfied in the same
outcomes of the model, they must have the same validating set). Therefore,

the conclusion follows directly by definitions 7 and 10, since |JφiK|
|O| =

|JφjK|
|O| (the

equivalence follows easily from the fact that the denominators are equivalent and
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so are the numerators of the fractions). The previous fact directly implies that
P (φi) = P (φj). Since the model was chosen arbitrarily, the same holds in every
model.

Theorem 5 (Strong Additivity).

|= P (φi ∨ φj) + P (φi ∧ φj) = P (φi) + P (φj)

Proof. Take the two tautologies φi ↔ (φi ∧ φj) ∨ (φi ∧ ¬φj) and φj ↔ (φj ∧
φi)∨ (φj ∧¬φi). For simplicity, name (φi∧φj) as α1, (φi∧¬φj) as α2, (φj ∧φi)
as β1 and (φj ∧ ¬φi) as β2.

Since the formulas taken are tautologies, it follows that |= φi ↔ (α1 ∨ α2)
and that |= φj ↔ (β1 ∨β2) By theorem 4, we derive that |= P (φi) = P (α1 ∨α2)
and |= P (φj) = P (β1 ∨ β2). Note that |= ¬(α1 ∧ α2) and that |= ¬(β1 ∧ β2).
By theorem 2, it follows that |= P (α1 ∨ α2) = P (α1) + P (α2) and that |=
P (β1 ∨ β2) = P (β1) + P (β2). By algebra and substitution of equivalents, it
follows that |= P (φi)+P (φj) = P (α1)+P (α2)+P (β1)+P (β2). Name this fact
one.

Now, take the tautology (φi ∨ φj) ↔ (α1) ∨ (α2) ∨ (β2). Since this is a
tautology, it follows that |= (φi ∨ φj) ↔ (α1) ∨ (α2) ∨ (β2). By theorem 4,
|= P (φi ∨ φj) = P (α1 ∨ α2 ∨ β2). Also note that |= ¬(α1 ∧ (α2 ∨ β2)). By
theorem 2, this means that |= P (α1 ∨ α2 ∨ β2) = P (α1) + P (α2 ∨ β2). Note also
that |= ¬(α2∧β2). By theorem 2, it follows that |= P (α2∨β2) = P (α2)+P (β2).
Therefore, |= P (α1 ∨ α2 ∨ β2) = P (α1) + P (α2) + P (β2). By equivalence, this
means that |= P (φi ∨ φj) = P (α1) + P (α2) + P (β2) Name this fact two.

By putting together fact one and fact two, it follows that |= P (φi ∨ φj) =
P (φi) + P (φj) − P (β1), which, by algebra, is equivalent to |= P (φi ∨ φj) +
P (β1) = P (φi) +P (φj). By using the definition of β1 and the commutativity of
conjunction, it follows that |= P (φi ∨ φj) + P (φi ∧ φj) = P (φi) + P (φj).

4 Soundness and Completeness

We will now show that Λ is sound with respect to the class of all frequentist
models.

4.1 Soundness

Theorem 6 (Soundness). If ⊢Λ χ then |= χ

Proof. In order to prove soundness, we will show that all axiom schemata are
valid with respect to the class of all frequentist models and then show that MP
preserves validity.

For instances of (i) and (ii) of definition 12, the proof is straightforward and
follows from the definition of propositional tautology and from the algebraic
properties of the mathematical operations, which were assumed in frequentists
models.
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For instances of Ax. 1, note that the value of P (ψ) is obtained by taking |JφK|
|O| .

By definition 5, ∅ ⊆ JφK ⊆ O. This implies that |∅| ≤ |JφK| ≤ |O|. In addition, by
definition 3, it follows that ∅ ⊂ O, which implies that |∅| < |O|. Since |∅| = 0, it
follows that O is strictly positive. From those premises, it follows directly that
|JφK|
|O| is both defined (|O| is different from zero) and is bigger or equal to zero,

which proves the validity of Ax. 1.
For instances of Ax. 2, note that J⊤K = O. Since the two sets are equivalent,

so is their cardinality, i.e., |J⊤K| = |O|. Moreover, the value of P (⊤) is equivalent

to |J⊤K|
|O| . Given the fact that |O| is finite and strictly bigger than 0, the fact that

the numerator and denominator of |J⊤K|
|O| are equivalent, implies that their ratio

is equal to 1, which means that P (⊤) = 1.
Instances of Ax. 3 are just instances of theorem 2.
Instances of Ax. 4 are just instances of theorem 4.
Finally, we must show that MP preserves validity. For the propositional for-

mulas, this follows straightforwardly from propositional logic and the way the
valuation function works. For probability formulas, it must be shown that if
P (φi)⊙ bm and P (φi)⊙ bm → P (φj)⊙ bt, it follows that P (φj)⊙ bt.

Assume that P (φi)⊙bm and that P (φi)⊙bm → P (φj)⊙bt. By definition 10,

the first assumption asserts that |JφiK|
|O| ⊙ bm. By the definition of →, the second

assumption asserts that it must hold that either it is not the case that |JφiK|
|O| ⊙bm

or
|JφjK|
|O| ⊙bt. By the first assumption, we know that it cannot be the first disjunct,

therefore it must be the second one. However, the second one is just the definition
of P (φj)⊙ bt. Thus, MP preserves validity.

4.2 Weak Completeness

To proof weak completeness we will mimic the proof given in [5]. In order to do
so, some fact must be established.

Since FPL is equivalent to propositional logic with the addition of probability
formulas, and it is known that propositional logic is complete, we must only show
that the added probability formulas also preserve completeness. This means, in
particular, that we can focus only on the ψ formulas of the language. Thus, we
must show that if a probability formula is valid, then it is provable.

Definition 14 (Literals and Literal Formula). We define as literal any
atomic formula pi or its negation ¬pi. A literal formula δ is a formula φ1 ∧
· · · ∧ φn, where each φi is a literal.

Definition 15. We use the notation At(χ) to indicate the set of all atomic
formulas contained in χ.

Lemma 1. Let φ be a propositional formula. Call Lit(φ) the set of all literal
formulas δ obtained from At(φ) such that δ → φ is a propositional tautology. It
is provable that P (φ) =

∑
δ∈Lit(φ) P (δ).
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Proof. The proof will be given by induction on the size of Lit(φ). Note that the
main claim of lemma 1 can be expanded as follows (where the γ formulas are
literals taken from Lit(φ)):

P (φ) = P (φ ∧ γ1) + · · ·+ P (φ ∧ γ2i)

Base case. Assume that i = 1.
It must be shown that P (φ) = P (φ ∧ γ1) + P (φ ∧ γ2) is provable. By the

construction processes mentioned above, γ2 := ¬γ1 (γ must be taken from the set
of literal formulas, but since in the base of the induction, the set Lit(φ) contains
only one element, it is possible only to construct the two literal formulas γ1 and
¬γ1). Therefore, it must be proven that P (φ) = P (φ ∧ γ1) + P (φ ∧ ¬γ1). This
follows from Ax. 3 of definition 12. Thus, the formula is provable.

Inductive base. Assume that the following is provable:

P (φ) = P (φ ∧ γ1) + · · ·+ P (φ ∧ γ2i)

By Ax. 3, it is provable that P (φ∧γ1) = P (φ∧γ1∧pi+1)+P (φ∧γ1∧¬pi+1).
Using propositional reasoning (clause (i) in definition 12) and instances of valid
inequality formulas (clause (ii) in definition 12), it is possible to substitute each
formula P (φ∧γr) in the inductive base with a formula P (φ∧γr ∧pi+1)+P (φ∧
γr ∧ ¬pi+1). This implies that the inductive step is provable:

P (φ) = P (φ ∧ γ1) + · · ·+ P (φ ∧ γ2i+1).

As a particular case, the following formula follows:

P (φ) = P (φ ∧ δ1) + · · ·+ P (φ ∧ δ2n) (2)

Now, take the set At(φ), i.e., the set of all atomic formulas contained in φ.
By propositional reasoning, if δr ∈ At(φ), then (φ ∧ δr) ↔ δr, which, by Ax. 4,
means that P (φ ∧ δr) = P (δr). If δr ̸∈ At(φ), then (φ ∧ δr) = ⊥, which, by Ax.
4 and Theorem 1, means that P (φ ∧ δr) = 0.

Given those facts, in formula 2, each P (φ ∧ δr) can be either substituted
with P (δr) or 0, depending on whether δr is included in At(φ) or not. Therefore,
lemma 1 follows.

Theorem 7 (Weak Completeness). If |= χ then ⊢Λ χ.

Proof. As previously stated, we can limit ourselves to probability formulas and
their Boolean combinations, since the completeness of the portion of the language
with propositional formulas follows from the completeness of propositional logic
(note that our semantics does not differ from that of propositional logic). More-
over, due to proposition 4, it is possible to reduce the problem of the provability
of combinations of propositional and probability formulas to that of combina-
tions of just probability formulas (which we will prove now).

We therefore prove completeness by showing that any consistent formula
is satisfiable. For the proof we will use χ to refer to Boolean combinations of
probability formulas, thus excluding the portion of χ containing propositional
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formulas. A simple probability formula P (φ) ⊙ b could always be read as a
Boolean combination between P (φ)⊙ b ∧ P (⊤) = 1.

Assume that χ is consistent. First, transform χ into its disjunctive normal
form (DNF), i.e., a disjunction of conjunctions (call each one of the disjunctive
clauses χclausei). Call this formula χDNF (χDNF will look like this: χclause1 ∨
· · ·∨χclauser ). By propositional reasoning it is possible to show that χ and χDNF

are provably equivalent. Thus, since χ is consistent, so is χDNF . This implies
that at least one of the clauses χclausei must be consistent. Imagine that this
is not the case, i.e., ¬χclausei was provable for every i, then it is easy to see
that ¬(χclause1 ∨ · · · ∨ χclauser ) was also provable, which would make χDNF

inconsistent, which is a contradiction. In addition to knowing that there is at
least one χclausei which is consistent, every model that satisfies χclausei must
also satisfies χ. We can therefore limit ourselves to the evaluation of a χclausei .
Call this formula f . Recall that all the elements of f are probability formulas ψ.

By lemma 1, we know that we can construct a formula f ′ starting from f by
substituting every conjunct in f , with a formula P (δ1)+· · ·+P (δ2n), where At(f)
includes all the atomic propositions that appear in f and where the δ1, . . . , δ2n

are the Lit(f).
Now, construct a formula f ′′ from f ′ by adding as conjuncts all the formulas

P (δj) ≥ 0, with 1 ≤ j ≤ 2n, and the formula P (δ1) + · · · + P (δ2n) = 1. The
first set of additions follows from Ax. 1, while the last addition is an instance of
lemma 1, where φ = ⊤, and Ax. 2.

This new formula f ′′ is provably equivalent to f ′ and therefore to f . To prove
completeness, we therefore must show that f ′′ is satisfiable. Note that f ′′ is a
conjunction of 2n + r + s+ 1 formulas of the form:

P (δ1) + · · ·+ P (δ2n) = 1

P (δ1) ≥ 0

. . .

P (δ2n) ≥ 0

P (δ1)r + · · ·+ P (δ2n)r ≥ br

P (δ1)s + · · ·+ P (δ2n)s < bs

(3)

where each P (δ1)r + · · · + P (δ2n)r ≥ br captures the positive conjuncts of f ′,
while each P (δ1)s + · · ·+ P (δ2n)s < bs captures the negative conjuncts of f ′.

Equation 3 can be easily transformed into a system of linear inequalities
by substituting all instances of formulas with a variable (maintaining uniform
substitution). Thus, the equation would become:

x1 + · · ·+ x2n = 1

x1 ≥ 0

. . .

x2n ≥ 0

x1r + . . . x2nr ≥ br

x1s + . . . x2ns ≥ bs

(4)
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If equation 4 is satisfiable, so is f ′′, and, in turn, f ′, f and χ. Now, assume
that f ′′ is unsatisfiable. This implies that equation 4 is unsatisfiable. Therefore,
¬(f ′′) becomes an instance of (ii) from definition 12. That would mean, however,
that f and therefore χ is inconsistent, which is a contradiction. Thus, f ′′ must
be satisfiable.

5 Conclusion and Future Works

In the paper, we presented a logic FPL to reason about probabilities with a
relative frequency interpretation. We showed that it is possible to interpret the
language of FPL with the standard semantics for propositional logic. FPL can
give a peculiar frequentist interpretation of the probability operator as presented
in [5]. We then gave a proof system for the language, proved that the traditional
theorems of probability hold in our language, and established that the tech-
niques employed in [5] to prove soundness and completeness work also for our
interpretation.

In the future, we have two evolving plans. The first plan is to increase the
expressiveness of FPL by evolving the logic in various directions. The second
plan is to apply the logic to various contexts related to computer science and
reasoning under uncertainty. As far as the first plan goes, we would like: (i) to
add a third truth value to the codomain of v, in order to express irrelevance of a
proposition to a given outcome. This would allow us to construct examples where
only specific propositions (and not all of them) are tested during an experiment.
(ii) to add multiple agents to the logic and to add communication channels
between them. This would allow us to model scenarios in which different agents
ran different experiments and then communicated their results to each other.
(iii) to add dynamism to the language. This is the most interesting addition
to the logic, since it would allow us to provide updating techniques which do
not reduce to Bayesian updating. Specifically, we would like to construct a logic
which allows a frequentist updating possibility.

Obviously, also combinations of (i), (ii), and (iii) would be interesting ad-
ditions to FPL. As far as the second plan goes, we would like: (i) to employ
FPL to reason about uncertainty in logics with trust operators, which could
then measure the ratio of positive recommendations over all recommendations
and of positive direct experiences (e.g., it would be interesting to evolve the
propositional components of, e.g., [14, 13, 1, 2] to add a probabilistic part). (ii)
to employ FPL to reason about probabilistic verification of machine learning,
and statistical and approximate model checking.
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narová, J., Wilson, N. (eds.) Symbolic and Quantitative Approaches to Reasoning
with Uncertainty: 16th European Conference (ECSQARU 2021). LNAI, vol. 12897,
pp. 575–589. Springer (2021)



16 A. Aldini et al.

2. Aldini, A., Tagliaferri, M.: Logics to reason formally about trust computation
and manipulation. In: Saracino, A., Mori, P. (eds.) Emerging Technologies for
Authorization and Authentication. LNCS, vol. 11967, pp. 1–15. Springer (2020)

3. Antonelli, M., Lago, U.D., Pistone, P.: On counting propositional logic and wag-
ner’s hierarchy. In: Coen, C.S., Salvo, I. (eds.) Proceedings of the 22nd Italian Con-
ference on Theoretical Computer Science. CEUR Workshop Proceedings, vol. 3072.
Technical University of Aachen (2021)

4. Demey, L., Kooi, B., Sack, J.: Logic and Probability. In: Zalta, E.N., Nodelman,
U. (eds.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, Fall 2023 edn. (2023)

5. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities.
Information and Computation 87(1-2), 78–128 (1990)

6. Fattorosi-Barnaba, M., Caro, F.D.: Graded modalities. I. Studia Logica 44(2),
197–221 (1985)

7. Fazlyab, M., Morari, M., Pappas, G.J.: Probabilistic verification and reachability
analysis of neural networks via semidefinite programming. In: 2019 IEEE 58th
Conference on Decision and Control (CDC). pp. 2726–2731 (2019)
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A Syntactic Proofs

Theorem 8 (Probability of ⊥).

⊢ P (⊥) = 0 (5)

Proof. Direct Proof.
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1. ¬(⊤ ∧⊥) Taut.
2. P (⊤ ∨⊥) = P (⊤) + P (⊥) Ax. 3 from (1)
3. P (⊤) = 1 Ax. 2
4. (⊤ ∨⊥) ↔ ⊤ Taut.
5. P (⊤ ∨⊥) = P (⊤) Ax. 4 from (4)
6. P (⊤ ∨⊥) = 1 Transitivity of =
7. 1 = 1 + P (⊥) Substitution from (2), (3), and (6)
8. P (⊥) = 0 By algebra over (7).

Theorem 9 (Probability of Negation).

⊢ P (¬φ) = 1− P (φ) (6)

Proof. Direct Proof.

1. P (⊤) = 1 Ax.2
2. (φ ∨ ¬φ) ↔ ⊤ Taut.
3. P (φ ∨ ¬φ) = P (⊤) Ax. 4 from (2)
4. P (φ ∨ ¬φ) = 1 Substitution from (1) and (3)
5. ¬(φ ∧ ¬φ) Taut.
6. P (φ ∨ ¬φ) = P (φ) + P (¬φ) Ax. 3 from (5)
7. P (⊤) = P (φ) + P (¬φ) Transitivity of =
8. 1 = P (φ) + P (¬φ) Substitution over (1) and (7)
9. P (¬φ) = 1− P (φ) By algebra over (8).

Theorem 10 (Strong Additivity).

⊢ P (φi ∨ φj) + P (φi ∧ φj) = P (φi) + P (φj) (7)

Proof. Direct Proof.
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1. φi ↔ (φi ∧ φj) ∨ (φi ∧ ¬φj) Taut.
2. φj ↔ (φj ∧ φi) ∨ (φj ∧ ¬φi) Taut.
3. P (φi) = P ((φi ∧ φj) ∨ (φi ∧ ¬φj)) Ax. 4 from (1)
4. P (φj) = P ((φj ∧ φi) ∨ (φj ∧ ¬φi)) Ax. 4 from (2)
5. ¬((φi ∧ φj) ∧ (φi ∧ ¬φj)) Taut.
6. P ((φi ∧ φj) ∨ (φi ∧ ¬φj)) = Ax. 3 from (5)

= P (φi ∧ φj) + P (φi ∧ ¬φj)
7. ¬((φj ∧ φi) ∧ (φj ∧ ¬φi)) Taut.
8. P ((φj ∧ φi) ∨ (φj ∧ ¬φi)) = Ax. 3 from (7)

= P (φj ∧ φi) + P (φj ∧ ¬φi)
9. P (φi) + P (φj) = P (φi ∧ φj) + P (φi ∧ ¬φj)+ Algebra and substitution

+P (φj ∧ φi) + P (φj ∧ ¬φi) from (3), (4), (6) and (8)
10. (φi ∨ φj) ↔ (φi ∧ ¬φj) ∨ (φj ∧ ¬φi) ∨ (φi ∧ φj) Taut.
11. P (φi ∨ φj) = Ax. 4 from (10)

= P ((φi ∧ ¬φj) ∨ (φj ∧ ¬φi) ∨ (φi ∧ φj))
12. ¬((φi ∧ φj) ∧ ((φi ∧ ¬φj) ∨ (φi ∧ φj))) Taut.
13. P ((φi ∧ ¬φj) ∨ (φj ∧ ¬φi) ∨ (φi ∧ φj)) = Ax. 3 from (12)

= P (φi ∧ ¬φj) + P ((φj ∧ ¬φi) ∨ (φi ∧ φj))
14. ¬((φj ∧ ¬φi) ∧ (φi ∧ φj)) Taut.
15. P ((φj ∧ ¬φi) ∨ (φi ∧ φj)) = Ax. 3 from (14)

= P (φj ∧ ¬φi) + P (φi ∧ φj)
16. P ((φi ∧ ¬φj) ∨ (φj ∧ ¬φi) ∨ (φi ∧ φj)) = From (13) and (15)

= P (φi ∧ ¬φj) + P (φj ∧ ¬φi) + P (φi ∧ φj)
17. P (φi) + P (φj) = P (φi ∨ φj) + P (φj ∧ φi) From (9), (11) and (16)

Note that the proofs of Finite Additivity and of Equivalence of Probabilities
follow directly from the axioms of our proof system. You just have to assume
the condition of the axioms and then get the conclusion directly by applying the
relevant axiom.


