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Abstract. Originating in computer science in the 1950’s, executive func-
tion is now an important concept in behavioral sciences. This Tool paper
examines the core definitions of executive function, and how that relates
to free, willed choices in human behavior. We contrast this with cognitive
assessment methods that tend to push test takers into convergent think-
ing. We show how a common form of cognitive test used in behavioral
sciences to measure executive functioning, the Trail Making Test, can be
altered so that it requires divergent thinking. To analyze and summa-
rize performance of multiple, individual, free choices we apply statistical
methods taken from computer science to test for randomness. The tool
presented, the Choice Trails Test, and the proposed analysis method,
allow for novel ways to investigate top-down, executive, cognitive con-
trol using a simple paper-and-pencil test. The benefit of this approach
is that it produces indices of performance that are closely aligned with
the essential meaning of executive functions. Additionally, this method
provides a denser data set than traditional methods that examine total
performance metrics. Denser data allows for analysis that is consistent
with traditional approaches to examining task performance in cognitive
science that stress continuous analysis of processes across tasks.

Keywords: Executive function · Divergent thinking · Action selection ·
Trail making test · Task switching · Willed action · Free choices.

1 Executive Cognitive Control

The concept of executive controllers, programs that oversee other programs,
originated in computer science in the 1950’s, but was later adopted widely by
neurological and cognitive sciences [34]. The modern concept of executive control
in cognitive science has thus developed from two fields. Firstly, it has been used
widely in neuropsychology to functionally describe disorganized behavior seen
after damage to the frontal lobes of the primate brain (e.g., [38]). Secondly,
the concept of a supervisory attentional controller, or central executive, has
been included in highly influential cognitive models developed in experimental
psychology (e.g., [3, 27]). Despite the concept of executive control spreading to
a range of other disciplines, the influence of neuropsychology and experimental
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cognitive psychology has defined how the executive functions are conceptualized
and measured in quantitative cognitive research.

The vast majority of assessments of executive functions used in diverse fields
including, education, linguistics, public health, human-resources management
etc. have followed the experimental psychology influence in attempting to quan-
tify executive control (essentially a latent variable) by measuring accuracy of
performance on demanding, yet highly constrained tasks. Take for example the
various towers tasks, such as the Towers of Hanoi, which are widely used to mea-
sure planning as an executive function (e.g., [44]). Towers tasks involve moving
from a prespecified start state of different sized disks on any of three pegs, to
a predefined finishing goal state configuration. It is cognitively demanding be-
cause there are strict rules concerning how the disks can be moved. To perform
efficiently, the moves must be planned several steps in advance, with goal states
decomposed into sub-goals. In fact, it is the highly constrained nature of such
tasks, and limited search space, that has made them of substantial interest also
to artificial intelligence (e.g., [22, 50]).

But how well does the manifest performance on such tasks relate to the con-
cept of an executive controller? Performance on towers tasks in fact have, in
fact, been interpreted as indicating a wide range of cognitive processes including
planning [44, 50], spatial working-memory [30], or resolution of sub-goal / goal
conflicts [15], among others. Similar ambiguity of process issues affects other
commonly used tests of executive function, such as the Stroop task and n-back
tasks, raising problems of what is exactly being studied by these executive func-
tion tests [37]. At this stage it is necessary then, to consider in more detail the
definition of executive control.

1.1 Defining Executive Control

Executive function is the term often used in cognitive psychology to describe
the top-down processes underlying control of action. Specifically, it refers to
processes underlying goal-directed action that is required to face non-routine
challenges [34, 45]. Furthermore, it has to be more than just goal-directed, it
has to produce ‘intelligent’ outcomes, as some goal-directed mechanisms can
nevertheless be incapable of adaption [24].

Within cognitive neuroscience, the term cognitive control is often preferred
but refers to the same idea, defined as: “Cognitive, or executive, control refers
to the ability to coordinate thought and action and direct it toward obtain-
ing goals. . . . Executive control contrasts with automatic forms of brain pro-
cessing.” [25, p. 99]. As mentioned above, one of the historical reasons for the
concept of executive controllers moving from computer sciences into cognitive
neurosciences, was the application of the concept of executive cognitive control
to understanding behavioral disorders seen after experimental damage to the
frontal lobes in non-human primates [38].

As an extension of that, from a clinical perspective, cognitive control is used
to explain deficits seen in human patients after damage to the frontal lobes [33,
34]. As an example, take this clinical description: “one straightforward difficulty
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common after frontal lesions is defective control of behavior in the face of choice,
complexity, or ambiguity” [1, p. 1515]. The same authors also offer a further con-
ceptual definition: “Cognitive control is required when. . . a stimulus is ambiguous
and potentially conflicting responses might be generated”. Similarly, definitions
of executive control from developmental psychology emphasize that they repre-
sent top-down control of cognition when the correct responses are ‘ambiguous’ [1,
18, 41]. In this sense, ambiguous means that appropriate behavior cannot be di-
rectly driven by sensation.

It is well known that definitions of executive function and cognitive control
used in behavioral sciences are vague and variable [4]. Nevertheless, key aspects
are their top-down coordination of intelligent goal-directed behavior, in non-
routine situations, and in contexts in which the appropriateness of stimulus-
response associations are ambiguous. Indeed, the behavioral outcome of such
executive control processes are often referred to as being ‘willed’, as opposed to
being automatic and stimuli-driven [14, 20, 25, 27, 42]. How well then does such
an analysis describe the task goals of common laboratory and clinical assessments
of executive functions used in clinical neuroscience and psychology?

If we stay with the towers tasks as an example, we can clearly see why
performance of them is often considered a measure of executive cognitive control.
They are certainly goal-directed, one of the key, defining features of executive
control, in that the task is to move from a start state to a goal state, and there
are many choices that need to be made. And at least on first attempts, they are
non-routine and cannot be completed through automatic routines triggered by
stimuli.

However, on closer examination, we can see that participants in research
studies, or clinical patients, do not just perform a single tower task that is novel
to them. In order to obtain scores with a wide dispersion across individuals,
usually multiple trials are performed, each with different start and end goal
states. Typically, between 8 and 20 different trials are performed per person,
involving potentially hundreds of separate moves. Total scores are calculated
based on using the fewest number of moves possible to reach the goal states.
There are in fact simple routines that can be applied to efficiently achieve the
end goal states, and people do spontaneously apply them [46, 50]. Furthermore,
substantial learning occurs during task performance. Some of the learning is
procedural, but also declarative discovery of rules, which means that people can
effectively identify and apply schematic routines to achieve the goal state on
each trial [48]. For this reason, towers tasks, as they are typically analyzed, tend
to be actually quite unreliable measures of processes supposedly under executive
cognitive control [32].

The problem may be that most quantitative measures of executive cognitive
control have originated in laboratory-based experimental psychology. Within
that field it is very common for test procedures to constrain the response space
and to classify and score all responses as correct or incorrect. The measure of
performance is then simply the total accuracy. Consequently, such lab-based
tasks are inherently convergent, in the sense proposed by Guilford. He defined
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convergent cognitive processing in this way: “In convergent thinking, there is
usually one conclusion or answer that is regarded as unique, and thinking is
channeled or controlled in the direction of that answer” [16, p. 274]. Reasoning
using deductive logic is a classic example of convergent thought. Most cognitive
tests used in experimental psychological research or clinical practice channel
performance in ways that meet the definition for convergent thinking given by
Guildford. Responses are essentially scored as being right or wrong, according to
predefined criteria. Even in tasks in which response time is taken as a variable
of interest, it is still inevitably the time taken to produce the unique response
that is considered correct by the experimenter.

1.2 Divergent Thinking and Executive Control

One of us has previously argued that the conceptual definitions of executive func-
tions are often more consistent with tasks that involve divergent thinking [34].
Divergent thought, the antipode to convergent thought, was originally defined by
Guilford in terms of task-related processing in which “. . . there is much search-
ing or going off in various directions. This is most clearly seen when there is no
unique conclusion.” [16, p. 274].

Guilford gives the task of verbal fluency as an example of a divergent thinking
task [16]. This is in fact one of only a few examples of tests used with the in-
tention of measuring executive functions that clearly involves divergent thought.
In verbal fluency tasks, people are asked to think of as many words as possible
that meet a criterion, within a short period, usually one minute. Phonemic flu-
ency involves producing words beginning with pre-specified letters, in English
often the letter ‘F’. Similarly, category fluency involves producing words within
a predefined semantic set, in English ‘animals’ is the most commonly used set.
Another example of a test described by Guilford as an exemplar of divergent
thinking is production of alternative uses for objects, most commonly a brick is
the target, and the participant is required to produce as many possible uses as
possible (e.g., a door stop, to crush cans for recycling...). Together the tests as
described here, and others such as gestural fluency, are well-known to be sen-
sitive to damage to the frontal lobes of the brain and are considered tests of
executive cognitive control involving voluntary generation of responses [40].

It appears that the human cognitive system finds fluency tasks, such as verbal
fluency, difficult because retrieval in that way is an unusual task requirement,
and we thus lack routines to do so, necessitating top-down executive control.
Evidence to support this interpretation comes from the observation that in verbal
fluency tasks people spontaneously cluster items that they recall, and frequently
switch cluster types. In comparison, patients with cognitive impairment caused
by dementia produce fewer, and smaller clusters. This is interpreted as indicating
a loss of volitional, spontaneous strategy application [5]. Furthermore, verbal
fluency is impaired the most for sets with large numbers of items [11], suggesting
that search strategies are the limiting factor, not availability of lexical items.

Another rare example of an executive function assessment method that in-
vokes divergent thinking is the Hayling Sentence Completion Test [7]. The test
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consists of two sets of 15 sentences each having the last word missing. In the
second part it requires participants to quickly complete the sentence with a word
that does not make any sense within the sentence context. The free choice aspect
of this task makes it difficult as there are so many possible words to choose from,
even neurologically healthy people struggle and tend to make errors by revert-
ing to routines, in that they give words that do in fact make sense. Mounting
evidence suggests that performance on this test is much more closely associated
with real-life performance in challenging environments than conventional, con-
vergent cognitive tests [35, 36], suggesting that whatever it measures conforms
well to that expected from the concept of an executive controller.

We argue that tasks such as described here which promote voluntary, di-
vergent thinking, where constraints are ambiguous because decisions can go in
unforeseen directions, are better at eliciting measurable behavior that conforms
to the conceptual definitions of ‘executive cognitive control’, at least, as opposed
to the majority of tests used in cognitive research and clinical practice, which
are decidedly convergent. This is because tasks that require divergent thinking
generally do not allow for routine, automatic processing. In fact, they are highly
executive because they measure free choices.

1.3 Free Choices in Experimental Tasks

The reason that quantitative cognitive research has generally avoided address-
ing free choices is that it is difficult to operationalize behavioral experiments
to measure them. Modern cognitive psychology is extremely experiment based.
Approximately 97% of all published cognitive psychology articles describe ex-
periments [49]. In cognitive psychology, experimentation is viewed in terms of
stimuli and response—the experimenter manipulates some variable (the stimu-
lus) and observes the effect on behavior (the response).

But willed actions, the behaviors said to result from executive cognitive con-
trol [14, 20, 25, 27, 42], by definition are not stimuli-driven. In the cognitive psy-
chology laboratory then, the standard stimulus-response experimental design is
of little use. If an experimenter asks a research participant to make free choices,
perhaps lift a finger whenever they want to, then the response cannot be readily
categorized as correct or not, nor the response time from will to action calculated.

In cognitive neuroscience this is less of a problem, as physiological measures
are taken as the response. This was demonstrated in one of the earliest functional
brain imaging studies, in which it was shown that free choice finger movements
activate the frontal lobes of the brain [14]. In fact, they activated the exact same
subregion which had been identified, and is still recognized, as the neurological
hub of executive cognitive control [29]. Furthermore, which willed action will be
made can be predicted at the neurophysiological level before the decision is made
by executive control [42]. This is because free choices appear to be influenced, at
least partly, by random noise of neuronal firing—if one set of cells are randomly
more active at a particular time point, then they are more likely to influence the
outcome when a decision is called for. In this sense, free choices are difficult to
maintain and require top-down control.
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Free choices could potentially be used as a behavioral measure of top-down
executive cognitive control if the convergent paradigm is not used. Instead of
accuracy of responses, one could measure the ability to override decision making
that is driven by factors such as routines, stimuli-response associations, and
neuronal noise. In a free-choice paradigm a research participant could be asked
to respond randomly and to not plan ahead, but still within a constrained task.
However, deviation from routineness in task performance is more difficult to
measure than accuracy, and it is an undeveloped field of cognitive research. In
the following section we describe a novel experimental task, and a mathematical
method to quantify performance, which targets how well participants can avoid
patterns in their free choices. This procedure also allows for the collection of
‘dense’ data [47], making it more amenable to a detailed cognitive analysis.

In the remainder of this paper, we describe a novel method for collecting
data on free choices, as well as a suggested statistical approach for its analysis
(Section 2). We then describe an example of the analysis using a sample of
data we collected (Section 3). The paper finishes with a discussion on the wider
context of the research reported, including applications and implications of this
novel approach (Section 4).

2 A Method for Eliciting Free Choices as Behavioral
Data

As previously described, the majority of laboratory tests of cognitive function
promote convergent thinking, encouraging research participants to produce pre-
defined correct responses. As another example of this we could examine the
Trail Making Test [39]. This has been widely in use in clinical and educational
cognitive assessment since the 1950’s. It is a paper-and-pencil test that involves
participants being presented with a page that has 25 circles marked on it. Each
of the circles contains a number (from 1 to 13) or an English alphabetic letter
(from A to L). The task is to draw lines as quickly as possible to join the circles
consecutively, but alternating number and letter sequences (i.e., 1-A-2-B-3- etc.).
There are numerous versions of this test (e.g., [10]) and also task modifications,
one of the most common modified forms is the Color Trails Test which dispenses
with the alphabetic letters and instead requires participants to switch between
joining pink and yellow circles [23]. This produces a more culture-fair test, in
that knowledge of the English alphabet is not needed for task completion. But it
necessitates that foils be provided- each number is shown twice, once in pink and
once in yellow. Both the standard version [10, 39] and Color version [23] require
convergent processing, as only one of the circles is ever considered correct as the
target of the line. We took this basic design but altered it to allow divergent,
responding via free choices of color.

2.1 The Choice Trails Test

To allow free choices, A4 size pages were produced which contained the numbers
1 through 25. However, each number was shown four times, each time in a
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different color. The same pink and yellow as the original test were used, but
additionally blue and violet circles were included. The four colors were selected
to have different brightness levels, so that they would be distinguishable even for
color-blind people. A sample task is shown in Fig. 1. The basic task requirement
is that participants must join the circles in numerical sequence, starting from
1, finishing at 25, choosing a different color each time. This and other rules are
described in more detail below.

Fig. 1. The Choice Trails Test.

When a participant performs the task correctly the lines that they draw will
not transect each other. For this task the completion of each page (i.e., joining all
numbers from 1-25) is considered a single trial. Within each trial 24 free choices
are made. We refer to each of these as 24 movements as steps. As the starting
point is a pink circle, the first step made within a trial is to choose whether
to select a yellow, blue, or violet circle 2. This continues until the participant
completes the 24th step (connecting circle 24 to circle 25) with their pencil. To
allow for multiple trials by the same participants, multiple versions were made
with the circles in different configurations on each page. All were very similar,
containing the same 4 colors, and each requiring 24 steps to complete. The
minimum line length to make all 24 steps was within 5% of the total distance
on all versions. A set of materials for 8 trials are available to download from
https://gpluck.co.uk/Tests/
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When completing a trial of the task, an individual sits at a table and the
Choice Trails test is placed in front of them. The test is obscured by the experi-
menter’s hand while the participant listens to the verbal instructions of the task.
The participant is given a pencil and told that they must draw lines to connect
all of the circles starting at circle 1. The specific rules are:

1. They should join the numbers in sequence with the pencil.
2. They should perform as quickly as possible without making mistakes.
3. They should not choose the same color twice in succession.
4. They should try to choose all the colors equally often.
5. They should avoid using any plans or strategies.

On the experimenter’s instruction to begin, a stopwatch is started. The ex-
perimenter watches performance and if the participant breaks a rule, such as
missing out a number, they are stopped and told to continue from the last point
before the error was made. The stopwatch is left running until the participant
completes the final drawn line (completing step 24, terminating on circle 25).
The completion time is recorded. To create the data set for the current study,
three trials were completed by a sample of 30 participants. The participants were
all undergraduate students. In addition to task completion times all choices from
all steps were tabulated in sequence. As there were 24 steps made on each trial,
this totaled 72 choices per research participant, and 2,160 choices recorded in
total from the sample. This is an ongoing study and the analyzed sample will be
larger in the final version of this paper.

2.2 A Method to Test the Randomness of Responses

In the task described above, the requirement faced by the research participants
is to make choices that will use all colors equally often, without using any strat-
egy. By this we mean the commonly understood meaning of strategy, being the
application of a plan to achieve a goal. This rule was introduced as, from our
experience in cognitive testing, research participants often do spontaneously ap-
ply simple strategies, such as repeating patterns. Although, from a philosophical
perspective the concept of a strategy could be interpreted in many other ways,
we expected participants to understand the instruction as to not apply explicit,
conscious plans to meet the task requirements. Therefore, although not explic-
itly instructed, the task implicitly required them to try to produce random free
choices.

From a data analysis perspective we have three trials of performance, each
with sequences of 24 steps / free choices, totaling sequences of 72 separate re-
sponses. The question is then, how random are their responses? Logically, it is
impossible to prove that a set of numbers are truly random, it is only possi-
ble to show that statistically speaking, they do not appear to be random [19].
Much of the research on detection of randomness stems from attempts to create
random number generators for commercial computing purposes, for use in in-
dustries such as gaming and online gambling. However, the largest application is
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cryptography. These industries require computations acting as random number
generators, producing information that is highly unpredictable, unbiased, and
trustworthy. As computer programs in practice use pre-established, finite lists
of numbers to produce seemingly random actions, their output over time will
become predictable. Thus, research on testing the efficacy of computerized ran-
dom number generators has developed methods to detect non-randomness (not
randomness per se).

One approach widely used in cryptography is the chi-squared method [2].
This creates a p value for the analyzed string to indicate the probability that
it comes from a set of numbers that are unpatterned (i.e., randomly assorted).
Over multiple strings analyzed the resulting p values can then be used as a
data set. Although behavioral scientists are more familiar with using p values to
evaluate hypotheses for individual research studies, the p values generated from
analyzing data sets can themselves comprise a data set, and can be analyzed with
normal inferential statistics. The most notable example of this in recent years is
the Open Science Collaboration which revealed that most psychology research
studies fail to be replicated [28]. Part of their analysis involved examining the
p values reported in published psychology articles, and using null-hypothesis
testing to decide the extent to which the p values from replications of the same
protocols showed the same score distributions.

Basically, p values are random variables, technically transformed test-statistics
(in our case from chi-squared tests) which puts them into a standard form, allow-
ing interpretation independent of the particular statistical test used [26]. They
have the benefit of being potentially normally distributed when they are derived
from hypothesis tests in which the null-hypothesis is incorrect. For this rea-
son, the transformed scores (i.e., the p values) will usually produce distributions
more amenable to further parametric statistical analysis, compared to the raw
test statistics (i.e., the chi-squared test values). This is because, for example,
the chi-squared statistic is calculated from the sum of squares of both positive
and negative values, the accumulation of relatively higher values will produce
positively skewed distributions.

Each chi-squared calculation is done at the level of the individual participant
(not group data). For each analysis performed, at the individual level a high
p value will indicate that the responses made by the participant appear to be
more random. Therefore, relatively higher p values can be interpreted as showing
relatively better top-down, executive control of behavior. The potential range of
p values is between 0 and 1.

3 An Example of the Analysis Using Task Performance
Data

From the data acquired from the 30 participants tested, our goal is to test
whether each participant appears to have chosen the colors randomly. If a par-
ticipant chooses colors in a purely random fashion, given 24 choices in a single
trial, the expected counts of a single color is 6 (= 24

4 ) in a single trial. Because each
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participant had three trials, the expected counts of a single color is 18 in three
trials combined. Similarly, we can calculate the expected counts of two-color bi-
grams (e.g., how often yellow-blue occur in consecutive choices) are chosen in a
single trial and in three trials combined. Particularly, given 4 colors, there are
12 possible permutations of 2 different colors. Then, the 24 choices in a single
trial produce 23 permutations of 2 different colors. Thus, the expected counts of
2 different color bigrams chosen consecutively is (=23

12 ) (roughly 1.92) in a single
trial, and that is (= 23

4 ) (which is 5.75) in three trials combined.
Based on these calculations, we can apply the chi-squared goodness of fit

test [8] to check if the observed counts follow the same distribution as the ex-
pected counts. We conduct this test five times to the data of each participant. The
first three chi-squared tests each check the randomness of single-color choices in
each of the three trials. The fourth chi-squared analysis checks the randomness of
a single color over three trials combined (i.e. 72 choices). The fifth and final chi-
squared checks the randomness of permutations of different color bigrams over
all three trials. For all of these analyses the expected counts were greater than
5 (which is a precondition of analysis with chi-squared). The FREQ procedure
in SAS 9.4 [43] was used to implement the chi-squared tests, and a SAS macro
was written to automate the analysis procedure across the 30 participants.

Across the group of 30 participants who provided the test data, the mean p
values for the randomness of individual choices (i.e., did they select all colors
equally often) were all around 0.8, these p values were derived from single trials,
as well as the calculation using performance across all three trials. As higher
p values indicate greater appearance of randomness of responses, it appears
that participants were quite good at this, and the measure may therefore not
sufficiently challenge executive processes in this type of participant.

More challenging appears to be randomness of responding when measured by
bigram frequencies (totals over three trials). The mean p value for this measure
was 0.61 (range of scores = 0.02 - 0.99). The lower p value indicates that in gen-
eral, the scores appeared to be less like a random set. For the proposed methods
of response-by-response analysis with chi-squared to be useful as a method of
quantifying executive control, certain qualities of the data distributions are de-
sirable. One is that there should be a normal distribution of scores. This appears
to be the case of the p values of bigram frequencies, as shown by a Shapiro-Wilk
test: W = 0.95, df = 30, p = 0.20. In addition, skew values (z = 1.12) and
kurtosis values (z = 0.62) were both within limits for assumption of normal
distribution of data [21]. In contrast, equivalent analyses for the frequencies of
single-color choices indicated that all had statistically non-normal distributions.
Consequently, the p values of bigram frequencies appear to be more appropriate
measures of the ability of participants to deliberately avoid patterned respond-
ing (i.e., give responses that appear random). For this reason, only the bigram
frequencies were further analyzed.

The score distribution also has to be sufficiently broad that it can distin-
guish different levels of performance, that is, it contains sufficient variance. The
coefficient of variance was found to be 0.45. This is somewhat higher than the
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coefficient of variance for the total task completion time (the conventionally used
measure of performance on trail-making tasks), which was 0.21. As both the dis-
tributions for total time and the p values of bigram frequencies were normally
distributed, we examined the Pearson zero-order correlation between the two
measures of performance. That revealed a significant negative correlation, r =
-0.49, p = 0.006. This suggests that, across participants, relatively poor task
performance as measured by completion time is associated with relatively poor
performance as measured by bigram frequencies.

These preliminary analyses therefore suggest that randomness of single choices
is not a good way to measure top-down executive control in this novel task.
However, bigram frequencies, represented as p values of how much the responses
appear random, may function better as a summary measure of executive con-
trol. The potential implications and applications of this are described in the final
section.

4 Discussion and conclusions

4.1 Summary

In this preliminary report, we provided first details of a novel cognitive tool,
that is nevertheless similar in many respects to other paper-and-pencil ‘trails
tasks’ used widely in behavioral sciences to measure executive cognitive control
(e.g., [10, 23, 39]). The principal difference being that this new task requires
participants to make free choices, rather than to perform the task in a predefined
way, which is the format of previous trails tasks. Moreover, we provide a method
to analyze how well participants who perform the task can resist tendencies to
pattern their responses.

The concept of free choice here is that the participants can, at each of 24
steps within each trial, choose between any of three colors without violating
any rules. Admittedly, they are told to not choose the same color twice (hence
limiting them from 4 to 3 options at each step), and they are instructed not
to use any plans or strategies. So, they are constrained at the overall task level
within a trial, but not at the individual choice level at each step. Although not
told to respond randomly, to attempt to do so is the only remaining approach
they have to guide their choices. This is why we consider them free choices.

In addition, we provide a statistical method to describe how well individual
participants were at avoiding patterned responding and effectively responding
randomly. This approach uses p values derived from chi-squared analyses, calcu-
lated at the level of the individual.

However, the wider context is that we show how data collection methods
in behavioral sciences can be approached differently, to allow measures that
more closely align to the concept of executive cognitive control. We have previ-
ously argued that definitions of executive control, which emphasize processing in
nonroutine or ambiguous situations to produce appropriate responses are best
considered as divergent thinking [34]. Divergent and convergent thinking are
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concepts in the classification of cognitive processes that have been popular since
the 1950’s (e.g., [16]). Despite this, the vast majority of tests used in exper-
imental and clinical practice attempt to measure executive processes that are
substantially convergent in their structure and analysis methods. Because diver-
gent processes, as we have attempted to elicit in our Choice Trails Test via free
choices, do not have unique right answers, novel ways of deriving a performance
measure have to be explored, necessitating meditations on what exactly is meant
by top-down executive cognitive control.

Consequently, our suggested method uses a procedure adopted from com-
puter science, one that is frequently employed to test the abilities of random
number generators (e.g., [2, 19]). Although this approach is a relatively novel
application within cognitive sciences, similar approaches have been used to mea-
sure behavior in clinical neuroscience. For example, a statistical measure of ran-
domness of responses was used to examine stereotypical responding in patients
with schizophrenia when asked to guess the color of playing cards presented
sequentially in a random order [13]. Similarly, patients with Alzheimer’s dis-
ease have been shown to overproduce ascending counting patterns (e.g., 3-4-5)
when asked to imagine repeatedly throwing a normal six-sided die and orally
reporting the outcomes [6]. These and other similar divergent thinking studies
of neuropsychiatric patients have mainly used the Random Number Generation
Index of Evans (1978) [12]. However, that calculation appears to be very similar
to chi-squared anyway. The benefits of using chi-squared-derived p values are
that they are more easily computed in standard statistical software packages,
and are well understood from their use in null-hypothesis testing.

4.2 Implications and Applications

The task described here may be useful as an alternative way to measure the
ability of people to make free choices, in a nevertheless constrained task that
allows for the individual to make choices that appear random, or which follow
predictable, routine patterns. Much evidence from cognitive and brain sciences
suggests that the human neurocognitive system tends to revert to routine pat-
terns, as the alternative, top-down executive control, is resource demanding and
subjectively effortful [34]. Moreover, the proposed methodology, of requesting
that study participants avoid routine response biases and then estimating the
randomness of their free choices, can potentially be applied to many other ex-
isting cognitive laboratory and clinical assessment methods.

In the specific task presented here, we found that that the analysis method
produced results that overlapped with the traditional methods of measurement
in similar tasks (i.e., time taken to task completion). Both measures were corre-
lated, suggesting that both are measuring some aspect of executive control. One
observation made was that our approach involving a response-by-response anal-
ysis produced greater between-individual variance in performance scores than
the traditional overall time-based method. This may have some practical ap-
plication. There has recently been concern within cognitive sciences involving
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behavioral studies that task measures are often statistically unreliable, produc-
ing many Type II statistical errors when used for hypothesis testing [9, 17]. This
is because cognitive tasks have generally been developed for laboratory-based ex-
perimental studies to elicit effects which are more apparent and easier to detect
when between-individual variance is low. However, that reduces their reliability
and makes them poor measures of how people differ in their abilities. That reli-
able variability is often needed when, for example, making brain-behavior associ-
ations by linking cognitive test scores to functional or structural neuroanatomy,
genetic and biomarkers etc. The methods proposed here may therefore function
better as indices of individual differences in executive processing than they will
in tests of experimental manipulations on processing.

However, this need not be a limitation. We argue that the method of analysis
described here, which focuses on a more microanalysis of response-by-response
data, can be performed in tandem with traditional analyses which focus on
overall task performance. This can be done whether the study paradigm is ex-
perimental or individual-differences based. This is a wise approach anyway in
that the current methods which focus on overall task performance can obscure
real differences in cognitive processes that underlie performance. It is known
that multiple different processes can produce the same behavior. This is known
as functional equivalence in traditional cognitive science [46] and degeneracy in
clinical and cognitive neurosciences [31]. Multiple analyses of task performance
can help to delineate those different underlying processes.

In fact, one of us has previously argued that there is a need for clinical as-
sessments of cognitive abilities to learn from traditional cognitive sciences [33].
Paper-and-pencil based cognitive test methods, such as described in this paper,
are widespread in clinical cognitive assessment, due to their simplicity and porta-
bility. That allows them to be used in bedside testing. This contrasts with often
highly-technical methods used in experimental cognitive psychology that are dif-
ficult to transpose from the laboratory setting. However, even bedside-derived
cognitive data can benefit from the process-based analyses used in cognitive
sciences. Traditionally, cognitive science analyses on behavioral data have used
methods to produce data with ‘temporal density’ that can be used to track
processing over short-time periods (e.g., [47]). Although this is now common in
laboratory-based cognitive studies (e.g., eye tracking), clinical testing tends to
rely on overall performance measures. In this paper we show how dense data can
still be elicited using the traditional paper-and-pencil tests typical of clinical
cognitive assessments.

4.3 Conclusions

Executive functions, by definition, deal with ambiguous stimulus-response as-
sociations and require that willed choices be made [14, 20, 25, 27, 42]. This con-
ceptually aligns closely with the idea of divergent thinking—a broad definition
that invokes cognitive processes that are creative and result in free choice of
responses [16]. However, there has long been a disjunction between conceptu-
alization of executive functions, and methods of measurement used in behav-
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ioral sciences. Here we show that common testing methods, such as the paper-
and-pencil trails tests [10, 23, 39] can be altered to change them from evoking
convergent, schematic action selections, to evoking divergent, free choices. This
necessarily requires a different approach to how performance is quantified. We
suggest a method using p values. We argue that this approach allows for new
ways to operationalize and measure top-down cognitive control in human behav-
ior. And these new ways may allow fresh insights into these high-level cognitive
processes. Future research will ultimately support, or challenge, the utility of
this approach.
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