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Abstract. “[In] unguarded moments I do think that everything is concepts”, stated 
Murphy in his popular big book of concepts [1] emphasizing the pivotal role of con-
cepts, or “mental representations”, in understanding the mind. Inspired by Murphy’s 
unguarded moments, we propose a framework asserting that in artificial neural net-
works (ANNs) everything is representations and mechanisms. Specifically, based on an 
interdisciplinary literature review, we propose a framework called the representations’ 
lifecycle. The framework consists of two main contributions: first, we propose a tem-
plate that characterizes representational change along three dimensions: a composi-
tional dimension, a hierarchical dimension, and a temporal dimension. Second, the lat-
ter template allows for the characterization and demarcation of six representation-alter-
ing processes: abstract primitives’ integration, perceptual primitives’ integration, as-
sembly, abstraction, differentiation and deletion. Our framework provides the founda-
tion for a more formal description of representational change in neural networks and 
thus, contributes to the broader efforts towards more transparent and explainable 
ANNs. 

Keywords: Representational development, artificial neural networks, neuro-
representationalism. 

1 Introduction 

Building upon neuro-representationalism and following Hubbard [2],  we premise our 
framework on the understanding that the notion of ‘representation’ implies two distinct 
but connected worlds: ‘the represented world’ and ‘the representing world’. Thereby, a 
representation “is an element in the representing world and reflects, stands for, or sig-
nifies some aspect of the represented world” [2]. In this paper, we focus on artificial 
representations. An artificial representation (hereinafter referred to interchangeably as 
‘representation’) is an aspect of a represented world that is encoded in a particular kind 
of representing world – an artificial neural network. The represented world can refer to 
the domain with which the ANN interacts. Specifically, we define representations as 
“information carrying entities identified in ANNs” [3]. As such, a representation en-
compasses artificial neural elements that are activated during the prediction of an aspect 
presented to the input layer of an ANN. With being encoded in ANNs, we assert that 
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representations are shaped by the ANN’s architecture, objective function, and learning 
rule [4], as well as by the data presented to the ANN during training.  

Representations in ANNs change. Thus, advancements in ANNs are regularly at-
tributed to processes involved in representational change. Hence, often deep learning 
researchers attribute the networks’ successes to processes such as generalization [5, 6], 
abstraction [7, 8], differentiation [9], or association [10, 11]. These processes, each 
playing a unique role, collectively contribute to nowadays sophistication of ANNs. 
Generalization, for example, broadens the applicability of learned representations. Ab-
straction and differentiation are instrumental to form novel representations through dis-
tilling and distinguishing complex inputs, respectively. Association, on the other hand, 
creates representations by connecting existing representations, and integrating their in-
formational content. Despite recognizing individual contributions, however, a cohesive 
framework that demarcates these processes and integrates them into a uniform model 
of representational development in ANNs is notably absent. To fill this gap, we develop 
a framework, we call the representations’ lifecycle, consisting of six processes respon-
sible for representational change in ANNs, namely abstract primitives’ integration, per-
ceptual primitives’ integration, assembly, abstraction, differentiation and deletion. Tak-
ing together these processes reflect a ‘complete’ set capable to describe the develop-
ment of representations in ANNs ‘from their birth to their loss’.  

Understanding representational change in the mind has longstanding tradition [12-
14]. While the representations’ lifecycle draws from research on representational de-
velopment discussed in the context of (non-human) animals at conceptual levels [1, 15-
20] or at neural levels [21-26], we primarily focus on and aim to describe representa-
tional development in ANNs. The process-integrative view taken in this paper is com-
plementary to existing ideas that approach representational development in ANNs em-
phasizing the value of single processes [7, 8, 10], mathematical principles [9], or pro-
vide nonneural accounts of representational development [27, 28]. In addition, with its 
representation-centric perspective, our approach stands in contrast to other non-repre-
sentational accounts such as computational phenomenology [29]. Furthermore, in con-
trast to other contributions [3, 29-32], we do not question the nature of representations 
or discuss their epistemic usefulness for better understanding the inner dynamics of the 
mind respectively ANNs. Rather, following the neuro-representational approach [29], 
we axiomatically posit the existence and usefulness of representations in ANNs. Spe-
cifically, as we will elaborate in section 2, we posit that representations are hierarchi-
cally-related compositions that change in a computational manner through mechanisms 
that operate on them [33]. Additionally, other than it has been suggested [34], tying in 
with other deep learning researchers [35, 36], we assume that it is useful to describe 
representations as entities that differ in their abstractness.  

The paper is organized as follows. In section 2, we first introduce the template used 
to characterize representational change. Latter template provides the basis to under-
stand the in section 3 presented representations’ lifecycle consisting of the six repre-
sentation-altering processes. We conclude with a conclusion, limitations and proposi-
tions for future research. 
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2 Dimensions of representational change in ANNs 

Representations change during training. In the representations’ lifecycle we model 
these changes through a template, called the representation-altering process. The tem-
plate characterizes representational change in ANNs along three dimensions: the com-
positional dimension, the hierarchical dimension, and the temporal dimension. First, 
representations are composed of finer representational constituents [30, 35]. Second, 
these compositions differ depending on their degree of specificity/generality and are 
related to each other [30, 35-37]. Third, latter hierarchical compositions change during 
training. In the subsequent section, we will elaborate on each of these dimensions. The 
notations and illustrations provided in this section form the basis to understand the rep-
resentations’ lifecycle in section 3. 

2.1 Compositional dimension 

Representations are composed of smaller units [30, 35]. Conceptualizing representa-
tions as compositions is a widely applied strategy. Especially, explainable AI research-
ers, aiming at explaining the inner workings of ANNs mechanistically, regularly draw 
from such compositional understanding [38-40]. To model compositions of representa-
tions, we use conceptual graphs as illustrated in Fig. 1. For example, in the conceptual 
graph (A) the structure of a representation DOG including its constituents HEAD, 
BODY, and TAIL is shown. (B) illustrates how the conceptual graph maps to a picture 
of DOG, presented to an idealized image recognition ANN. Finally, (C) exemplifies 
how this structure could be represented in the neural elements within the imagine recog-
nition ANN. As such the structure reflects the activated neural elements involved in a 
prediction. For example, assuming the task of identifying a DOG in a picture through 
an image recognition ANN, the composition of DOG is displayed by the activated neu-
ral elements, or in other words, by the neural correlates of the ANN causing the predic-
tion of DOG in dependence of data presented to the input layer. The constituents, in 
turn, reflect excerpts of the totality of activated neural elements involved in the DOG 
prediction, and as such refer to differentiable subunits of the DOG representation such 
as HEAD, BODY, or TAIL.   

 

 
Fig. 1. Conceptual graph and its relation to neural elements in an ANN  

2.2 Hierarchical dimension 

Representations in ANNs are hierarchically-related [9, 35-37, 41]. Hence, abstract rep-
resentations form and change in relation to their more perceptual counterparts, and vice 
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versa [9, 35, 36]. As shown in Fig. 2, following the illustrations provided by Petkov 
and Petrova [42], we model representational capacities of ANNs’ along two axes: com-
position and hierarchy (A). Particularly, we model the hierarchical relationship of rep-
resentations in ANNs through (a difference in) shared constituents, whereby, abstract 
representations share constituents with related perceptual representations but possess 
less. For example, in (B) the representation CAT is composed of the attributes 
MEOWS, WARM-BLOODED and NURSING. The CAT representation is hierarchi-
cally-related to the superordinate representation, MAMMAL. Both CAT and 
MAMMAL share attributes like WARM-BLOODED and NURSING. However, CAT 
has a differentiating attribute such as MEOWS that distinguishes it from MAMMAL 
and other, subordinate representations associated with MAMMAL. Thus, the abstract-
ness of representations is modelled based on associated constituents, with fewer con-
stituents, or in other words, fewer neural components involved, indicating a higher po-
sition in the hierarchy, making it more abstract compared to other representations in the 
same hierarchy.  

 

 
Fig. 2. Excerpt of a representational capacity 

2.3 Temporal dimension 

As shown in Fig. 3 (A), representation-altering processes describe the changes of rep-
resentations from state to state or, in other words, “from [an input] structure to [an out-
put] structure” [2] through a transformation mechanism. The transformation mecha-
nism describes how an output structure was reached given an input structure. Specifi-
cally, the mechanism provides a causal explanation that demonstrates how and why an 
input structure produces an output structure given the application of a learning rule 
responding to (training) data presented to the input layer. As introduced before, the 
structure of a representation describes its hierarchically organized composition. Hence, 
ultimately representation-altering processes describe how hierarchically-related con-
stituents of representations are modified, added, or deleted as a result of a mechanism. 
In (B) the input and output structures of the representation-altering process differentia-
tion are illustrated. Differentiation is characterized by forming more specific represen-
tations based on more abstract representations given in the input structure. Accordingly, 
as illustrated in Fig. 3. (B), the DOG representation was formed integrating constituents 
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of its hierarchical parent AGENT with additional, differentiating constituents such as 
BARKS.   

 

 
Fig. 3. Representation-altering process „differentiation”   

3 From birth to loss: The representations’ lifecycle 

The representations’ lifecycle is composed of six representation-altering processes that 
are being organized along three phases: innate, form & change, and decay. In the innate 
phase, the ANN is in a pre-training state, not yet influenced by external data. Processes 
in this phase concern the integration of primitives into an ANN through developers. 
Once the incorporation of data starts, the ANN enters the form & change phase. From 
this point, the system forms new representations or changes existing ones by doing 
both, incorporating training data, and leveraging already integrated representations. Fi-
nally, representations are being deleted. The latter refers to the removal of representa-
tions from the ANN’s representational capacity. 

In the following the representation-altering processes for each of three phases will 
be presented. Fig. 4 introduces illustrative examples of the representation-altering pro-
cesses. shows a summary of characteristics of the representation-altering processes as 
described for (non-human) animals and ANNs, respectively. The representation-alter-
ing processes introduced in the sections 3.1 to 3.3 are about descriptions of the pro-
cesses in terms of input and output structures. Each process presentation starts with a 
definition, followed by a characterization of the process derived from the cognitive sci-
ence literature. Hereafter, analogous findings identified in AI literature are summarized. 
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Fig. 4. Overview of representation-altering processes 

3.1 Innate 

The debate of how much of the mind is innate, and how much is formed by experience 
is stretching far back in history. Back then, primarily two schools of thought opposed 
each other [18]: nativism and empiricism. Proponents of the former argued that, to ex-
plain the complex behavior of biological cognitive systems right after birth, an innate 
machinery is required [18]. On the other hand, empiricists have argued that biological 
cognitive systems learn everything by observation respectively through their experi-
ences, and possess little to no innate representational capacity [43, 44]. Nowadays, it 
seems to be widely acknowledged [43], however, that “genes and experience” work 
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together. This interplay stance accepts that both components are important to model 
cognitive biological systems: innate machinery as well as experience [43]. Thereby, the 
innate machinery enables the system to learn, while learning, in the terminology of this 
paper, refers to the process of acquiring novel representations based on sensory data 
and in the system existing representations.  

In AI, the above controverses seem to be mirrored. However, while cognitive scien-
tists mostly aim to discover whether (non-human) animals have innated representa-
tional capacities, the AI debate rather revolves around whether and what innate repre-
sentational structures are useful to develop more capable systems. Thus, empiricists 
argue that ANNs require little to no primitives to work effectively  [9, 45]. On the other 
hand, scholars leaning toward the nativist viewpoint [18, 35, 46] argue that leveraging 
innate structures could help building more successful machines. The interplay stance 
proposes that ANNs should be modelled as a function over innate structures and expe-
rience, or in the context of AI, acquired training data [43]. Integrating the nativists and 
empiricists viewpoint, the stance emphasizes first, that innate structures and training 
data are relevant to describe the inner workings of ANNs and second, that ANNs differ 
in their richness of innate structures, but that their innate structure “cannot literally be 
zero” [43]. Following this stance, in this paper we assume that every ANN starts with 
an innate set of representational structures which in later stages of development is en-
riched by additional structures through training. Specifically, we conceptualize the ini-
tial representational capacity of an ANN, emerging from its initial architecture, objec-
tive function, and learning rule, as a set of primitives, or in other words, a set of innate 
representations, that both enables and restricts what the ANN can learn over the course 
of training.  

Leaning toward the “nativist” side of the interplay stance, cognitive and computer 
scientists have tried to identify specific primitives that allow to explain the learning 
capabilities of biological cognitive systems, or that are useful to design capable AI, 
respectively. In the following, we systematize these primitives along two angles assum-
ing that primitives can occur in abstract [16, 19, 20, 25, 43, 47, 48] and perceptual 
varieties [15, 16, 49]. Accordingly, it is assumed that the “life” of some abstract and 
perceptual representations starts with their integration into the ANN before the network 
is trained. 

Abstract primitives’ integration. Abstract primitives’ integration refers to the inser-
tion of abstract representations into an ANN, before training. As illustrated in Fig. 4, in 
the output structure abstract primitives are in the upper right section of a representa-
tional capacity. As such, they are considered the most abstract representations and thus, 
containing the fewest constituents compared to related perceptual representations. The 
input structure is empty since an ANN’s representational capacity comes into existence 
with having them integrated. Abstract primitives contain constituents which, at later 
stages of representational development, are inherited by the more perceptual represen-
tations formed on their basis.  

In (non-human) animals, abstract primitives are often characterized as innate repre-
sentations on which basis more perceptual representations are formed [15, 16, 47, 49]. 
A primitive is considered as abstract if, unlike a perceptual one, it allows for subsuming 
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a wide range of different aspects of the represented world [47, 49] and if it contains 
rather functional constituents than perceivable ones [15, 49, 50]. According to Mandler 
[15], contrarily to perceptual primitives, abstract ones include knowledge that is beyond 
the information provided by the senses and rather describe “what [an aspect] is” instead 
of “what [an aspect] looks like”. For humans, various kinds of abstract primitives have 
been proposed such as AGENCY [16, 19, 20, 47], CAUSATION [16, 19, 47], 
NUMERICS [16, 20], SOCIALITY [19, 20] and SPATIALITY [16, 47, 48]. For latter 
stages of representational development, it is assumed that the initial set of abstract prim-
itives is expanded through top-down processes (see section 3.2) [15, 16, 47, 49]. For 
example, pointing to experiments with infants, Mandler [15, 47] concludes that “many 
early [representations] appear to be global, relatively crude, and lacking in detail” [15] 
and, at latter stages, are differentiated through leveraging perceptual primitives and sen-
sory data [47]. The products of the differentiation are newly formed, more perceptual 
representations added to the representational capacity.  

In AI, abstract primitives increasingly move to the center of current research efforts 
[7, 8, 43]. In this vein, Mitchell [8] emphasized their importance: “unless we create AI 
systems that can master [abstract primitives] we have little hope of creating anything 
like human-level AI”. Although considered worthy endeavors [8, 18, 35, 43], efforts to 
equip modern AI with “[rich] priors, that orientate learning and improve acquisition 
speed” [18], or with “general priors about the world around us, i.e., priors that are not 
task-specific but […] useful” [35], seem to remain in an early stage of development [8]. 
Nonetheless, scholars already suggested abstract primitives that may be worth consid-
ering for AI. While pointing to the work of developmentalists, Marcus [43] proposes a 
set of ten primitives such as SPATIOTEMPORAL CONTIGUITY, CAPACITY FOR 
COST-BENEFIT ANALYSIS or CAUSALITY. Bengio, Courville [35] proposed gen-
eral primitives “about the world around us” such as A HIERACHICAL 
ORGANIZATION OF EXPLANATORY FACTORS, SMOOTHNESS and 
MANIFOLDS that enable “the learner to discover and disentangle some of the under-
lying (and a priori unknown) factors of variation that the data may reveal” and which 
are partially artificially implemented already [35]. However, it remains unknown “how 
long the list [of abstract primitives] really ought to be” [43]. Generally, identifying a 
comprehensive list of abstract primitives relevant to AI is significantly complicated by 
the lack of understanding of how useful abstract representational structures can be arti-
ficially generated [7, 8, 51]. 

Perceptual primitives’ integration. Perceptual primitives’ integration refers to the in-
sertion of perceptual representations into an ANN, before training. As illustrated in Fig. 
4, in the output structure perceptual primitives are in the lower left section of a repre-
sentational capacity. The input structure is empty since an ANNs’ representational ca-
pacity comes into existence with having them integrated. Perceptual primitives encom-
pass constituents which, at later stages of representational development, are subsumed 
by assembled representations formed on their basis.  

In (non-human) animals, perceptual primitives are often characterized by encom-
passing sensory, or sensorimotor representations [15, 16, 52] and are likely to be 
bounded to the senses respectively likely to be modality-specific [53]. For example, 
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visual perceptual primitives allow the interpretation of accumulated bits of sensory data 
[16] and can result in perceptions such as EDGES, CONTRAST or DEPTH. Visual 
perceptual primitives are used for the interpretation of combinations of wavelengths of 
light that stimulated the visual detectors of a given cognitive system. The “most basic” 
primitives are likely to have in common that they allow a cognitive system to detect the 
presence of elements of pattern in sensory data [52]. At a neurological level, perceptual 
primitives are supposed to be represented as “hard-wired” neuronal networks that allow 
biological cognitive systems to recognize complex stimuli [53]. These kinds of neu-
ronal networks have been reported across species (e.g., humans [54, 55], reptiles [53], 
insects [56]) and across different modalities (e.g., lexical  [54, 55], visual [55], auditive 
[54, 56]). The perceptual primitives complement the innate set of abstract primitives 
and are supposed to be involved in the enrichment of the representational capacity 
through bottom-up processes (see section 3.2). It is assumed that during the formation 
of representations, after the system came to life, both, abstract and perceptual primitives 
are involved simultaneously [15, 50]. For example, while humans learn new represen-
tations such as DOG or CAT, they differentiate their abstract primitives such as 
AGENCY and SPATIALITY and draw from perceptual primitives involved during the 
pre-interpretation of streams of sensory data which finally lead to an assembly of per-
ceptions such as BROWN, FLUFFY, or BARKS as constituents, in this case, subsumed 
under the DOG representation. 

In AI, artificial analogies that most closely match the scheme of perceptual primi-
tives are representations that help to pre-process incoming raw data, i.e., the data col-
lected by the virtual (e.g., program/data interfaces) or physical sensors (e.g., cameras, 
microphones) connected to a given ANN. Pre-processing of incoming raw data is sup-
posed to facilitate the learning from or classification of data in AI [57, 58]. Artificial 
perceptual primitives are domain-specific and thus, help to process data that is coined 
by a specific modality (e.g., visual/pixels, auditive/tones) and often is collected within 
a specific application area (e.g., traffic, weather forecast). Same as their biological 
counterparts, they enable AI to interpret chunks of sensory data. For example, artificial 
feature detectors are dedicated to enable better predictions through the pre-interpreta-
tion of chunks of visual sensory data [57]. For the interpretation of images, feature 
detection methodologies are used that can detect shape-entities, such as edges, contours, 
corners, or blobs [57] based on e.g., trained representations of those shapes available in 
ANNs. The detected features can then be combined to assemble new representations 
that associate the interpreted shape features [57, 59]. We assume that both, abstract and 
perceptual primitives, are involved when novel representations are formed in ANNs. 
For example, while an image recognition ANN learns the visual representation of a 
DOG, it differentiates its abstract primitives and leverages its perceptual primitives, 
involved in the pre-processing of pixels delivered by the virtual or physical sensors, 
leading to detected edges, or corners. Latter edges, or corners, are then assembled as 
constituents of the visual representation of DOG. 
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3.2 Form and change 

During training an ANN forms new representations or changes existing ones by incor-
porating data and combining already integrated representations. In humans, the pro-
cesses that form and change representations underpin higher-level cognitive abilities 
like decision-making, reasoning, language comprehension, and planning [24, 60-62]. 
In ANNs, given proper training data and effective execution, these processes provide 
the system with novel and/or refined representations resulting in enhanced predictions. 
As suggested by Gibson and Gibson [63], there are two theoretical stances to explain 
the formation of representations: the enrichment theory and the specificity theory. Re-
casting the two stances in the terminology of this paper, the enrichment theory assumes 
that an ANN’s representational capacity is starting with a set of perceptual primitives 
and is then, through bottom-up processes, gradually expanded by further abstract rep-
resentations; on the other hand, the specificity theory argues that a representational ca-
pacity starts with abstract primitives on which basis, through top-down processes, more 
perceptual representations are derived [63]. As emphasized in literature [15, 16, 49] and 
as described above, both types of processes are mutually dependent and deeply inter-
twined. Thus, we argue that starting with innate structures a representational capacity 
can be expanded through bottom-up processes such as assembly and abstraction as well 
as through top-down processes such as differentiation. Bottom-up processes either as-
semble representations through associating one or multiple representations, or produce 
abstract representations based on input structures which are composed of more percep-
tual representations. On the other hand, top-down processes either produce perceptual 
representations from abstract ones or specify existing representations. 

Assembly. Assembly refers to the process of forming representations along the “Com-
position” dimension through the association of two or more representations/constitu-
ents. As illustrated in Fig. 4, in the output structure the newly assembled representation 
contains constituents that in the input structure were unrelated. Assembly can take as 
input representations of any kind, modality, or abstraction and can produce representa-
tions of any kind, modality, or abstraction.  

In (non-human) animals, assembled representations are often characterized by con-
taining relationships between “separate (i.e., formerly unrelated) […] representations” 
[64]. In humans, these assembled representations can be multimodal and therefore, can 
consist of representations from different sensory modalities [65, 66]. Additionally, as-
sembly is characterized as a process that produces representations which are supposed 
to contain information about the propositional and semantic quality of the relationship 
in addition to the information that representations are related [24, 67]. The example 
given in Fig. 4 illustrates how representations of a given input structure derived from 
sensorimotor and auditive data, i.e., FLUFFY and BARKS, get subsumed as constitu-
ents under the newly assembled representation of DOG in the output structure. In this 
case, the relationship “part of” may describe the shared semantic content of the two 
associated representations, i.e., FLUFFY and BARKS, with the assembled representa-
tion DOG. The latter type of assembly refers to the formation of simple associations, 
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whereby objects or sensory impressions are classified as associatively related if they 
tend to spatially or temporally co-appear [24]. Besides the here given entity represen-
tation, it is assumed that assembly can result in relational representations that are pri-
marily defined by their relations outside themselves. Consequently, assembly can result 
in representations such as HUNTING by associating multiple representations such as 
PREDATOR and BAIT [42, 68] through, for example, extracting the common essences 
of event representations in which the act of one animal chasing another was observed. 
Furthermore, assembly also includes the formation of more abstract relations between 
representations, which are not formed based on co-occurrences but are, nonetheless, 
“judged as related, or conveying a common concept” [24]. In this sense, it is assumed 
that the process of assembly can result in all kinds of complex representations such as 
schema representations. For example, assembly can result in representations that reflect 
temporal/causal events (e.g., AFTER PUSHING THE BUTTON THE TV TURNS 
ON) or functional relationships (e.g., A SPOON IS USED TO EAT SOUP) [24]. In 
summary, the term assembly used in this paper refers to a process in which pre-existing 
representations of any kind, modality, and abstraction are subsumed as constituents un-
der a newly formed representation of any kind, modality, and abstraction along the 
“Composition"-dimension, while at the same time propositional respectively semantic 
content about their association is integrated. 

In AI, assembly-like processes are often entitled to be essential to the operation of 
modern ANNs [11, 13, 36]. Indeed, just like the human variant of simple associations, 
modern AI algorithms recognize patterns in data by analyzing statistical co-occur-
rences. For example, Wang and Raj [13] argue that machine learning methods in gen-
eral cluster “samples that are near to each other (under a defined distance) […] in one 
group” and that they draw more attention to “explanatory variables that frequently oc-
cur with response variables”. Associations have been created both within and between 
artificial representations of different modalities [11]. For example, deep learning com-
puter vision algorithms [69-71] have established relationships between visual represen-
tations by analyzing their spatial and temporal co-occurrences, resulting in newly as-
sembled modal-specific representations [11, 59]. Furthermore, modern deep learning 
algorithms have successfully assembled multimodal representations (for comprehen-
sive review, see Guo, Wang [11]), whereby, e.g., representations with lexical and visual 
formats were combined. As reported by Guo, Wang [11], the resulting representations 
differed in efficacity depending on the modalities that are combined. For instance, while 
effective representations combining image and language modalities have been success-
fully assembled and applied, other representations such as, for example, the ones com-
bining audio and video modalities are in a comparably early stage of development [11]. 
Furthermore, whereas first artificial associations between representations of different 
modalities have been established, the question of how to effectively assemble represen-
tations which integrate propositional content such as causality remains “largely open” 
[51].  

Abstraction. Abstraction refers to the formation of representations along the “Hierar-
chy” dimension. As illustrated in Fig. 4, in the output structure the newly abstracted 
representation is characterized by a reduction in specificity and an expansion in scope. 
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The reduction in specificity refers to a decrease in constituents of the more abstract 
representation relative to the related perceptual representation(s). The expansion in 
scope refers to an increase of subsumed perceptual representations that participate in 
constituents of the abstracted representations. Abstracted representations include es-
sences distilled from more perceptual representations contained in the input structure.  

In (non-human) animals, abstraction is often associated with a reduction in specific-
ity and an expansion of scope [72] of the newly formed representations. The reduction 
of specificity is characterized by a decreasing number of associated constituents of the 
newly formed abstract representation in comparison to the original more perceptual 
representation(s) [72, 73]. The set of reduced constituents of an abstract representation 
encompasses a set of “invariant central characteristics” [74] of an aspect and thereby, 
represents “any properties that increase the likelihood of accurately identifying [the 
aspect] across various contexts”. For example, in Fig. 4 the representations CAT and 
DOG have one or more common constituents such as BACKBONE. In the output struc-
ture, this set of common constituents is used to characterize the newly formed, more 
abstract representation VERTEBRATE. Latter set of constituents describing the ab-
stract representation VERTEBRATE encompasses less associated constituents than 
CAT or DOG and therefore is less specific. The expansion of scope refers to an increase 
in the number of subordinate representations associated with the newly formed abstract 
representation compared to the perceptual representation(s) of the input structure [72, 
73]. For example, the output representation VERTEBRATE is not characterized by 
constituents such as BARKS, or MEAT-EATER which, however, can be attributed to 
its subordinate DOG. In addition, VERTEBRATE subsumes representations of DOG 
and CAT and their underlying subordinates (e.g., SHEPHERD and POODLE) as well 
as other representations that are characterized by having a BACKBONE such as 
HUMAN or AMPHIBIAN. VERTEBRATE is associated with an expanded scope of 
subordinate representations and consequently, covers a wider range of aspects. Finally, 
an abstract representation can encompass constituents from different modalities. Ac-
cordingly, it has been argued [63, 75] that abstract representation likely involve percep-
tual and functional constituents; but in contrast to perceptual ones, abstract representa-
tions tend to have more functional constituents attached and are considered to be less 
associated with sensory impressions. 

In AI, a popular explanation for why artificial networks tend to work so well is that 
they construct “more complex […] representations from simpler and less abstract ones” 
[76]. In this vein, LeCun, Bengio [36] pointed out that modern deep learning networks 
operate on the basis of abstraction, whereby higher-level layers of a network contain 
abstractions formed on the basis of representations from lower-level layers. Thereby, 
representations in lower-level layers are more likely to be changed by local variations 
of the input data. Those of higher-level layers are “generally invariant” [35] to most 
variations of the input. Furthermore, representations contained in higher-level layers 
re-use representations that were learned by lower-levels, which makes them particularly 
suited for learning across domains [37] indicating their capability of subsuming wider 
ranges of aspects. While abstract representations have been artificially produced, there 
remain major differences to the abstractions that humans can produce and apply. In-
deed, unlike humans, who effectively can apply their abstractions to novel situations, 
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modern AI systems require vast amounts of data to create less generalizable represen-
tations that tend to produce mediocre results when applied to new situations/domains 
[7, 77]. As emphasized by Shanahan and Mitchell [7], although modern AI systems are 
able to “achieve a certain degree of generalization”, the abstract representations formed 
by modern AI often remain “tied to the domain in which they were acquired”. The 
authors Shanahan and Mitchell [7] conclude that the “shortcomings of contemporary 
neural network methods such as low sample efficiency, limited transfer ability, and 
poor out of distribution generalization […] result from an inability to form sufficiently 
general abstractions”. In general, the quest to understand how abstract representations 
are formed and what qualities they ought to possess to be effectively applied is ongoing 
[8, 75].  

Differentiation. Same as abstraction, differentiation refers to the formation of repre-
sentations along the “Hierarchy” dimension. Contrarily to abstraction, differentiation 
results in perceptual representations with an increased specificity and a reduced scope. 
As illustrated in Fig. 4, the increase in specificity refers to an increase in constituents 
of the more differentiated representation relative to the related abstract representation; 
the additional constituents among others differentiate the newly formed representations 
from other representations participating in the same hierarchy. On the other hand, the 
decrease in scope refers to a decrease of subsumed perceptual representations relative 
to its associated more abstract parent.  

In (non-human) animals, output structures resulting from differentiation are often 
characterized by an increased specificity and a reduced scope in comparison to the input 
structure. The increase in specificity refers to the differentiated representation contain-
ing more constituents than its parent [47, 63, 78]. These additional constituents distin-
guish the resulting representations from other representations related to the parent [78]. 
For example, as shown in Fig. 4, based on a given representation AGENT the more 
specified representation DOG is derived which encompasses besides the constituents 
which were inherited from the superordinate representation (GOAL and ACTS) addi-
tional constituents such as BARKS. Thereby, the additional constituents distinguish 
DOG from other representations that were also considered as AGENT such as CAT. 
The DOG representation represents a smaller range of aspects and therefore, possesses 
a reduced scope. Latter allows a cognitive system to separate stimuli that were once 
indistinguishable [79]. Furthermore, contrarily to their more abstract parents, it is as-
sumed that differentiated representations are likely to have more perceptual and less 
functional constituents attached than their parent [63]. 

In AI, during learning, abstract primitives and representations get adjusted or refined 
to fit the presented data. The process of fitting the rather general primitives and repre-
sentations to data suggests differentiation-like processes [9]. Hereby, the general-pur-
pose primitives serve as a starting point from which a more specific purpose is derived. 
For example, in their nonlinear ANN, Saxe, McClelland [9] observed “hierarchical, 
progressive differentiation of structure in its internal hidden representations, in which 
animals vs. plants are first distinguished, then birds vs. fish and trees vs. flower, and, 
finally, individual items”. Moreover, they claim that “progressive differentiation of hi-
erarchical structure […] is an inevitable consequence of deep-learning dynamics” [9]. 
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Broadly, to accelerate the AI's learning process, AI researchers regularly aim to apply 
the weights of higher layers (containing more abstract information) collected in a par-
ticular domain to other domains. However, as mentioned above, the transfer of gathered 
abstract representations attained in a specific domain remain often tied to the domain 
in which they were acquired [7].  

3.3 Deletion 

Deletion results in the removal of representations and/or constituents from the repre-
sentational capacity. Deletion is more than a mere biproduct of representation altering. 
Contrarily, it has been suggested that deletion provides cognitive systems with several 
benefits [80-83] such as efficient storage management, attention direction, and better 
decision making. Both, the formation and forgetting of representations, are considered 
as “complementary processes which construct and maintain useful representations” 
[84]. The decay of representations can be a product of deleting, overriding, suppressing, 
or sorting out outdated information [82].  

In AI, within deep ANNs learned representations change depending on the data pre-
sented to the input layer; this change, in turn, can result in a decay of representations or 
constituents. For example, considering the case of adapting a pretrained network to a 
new domain: if trained with data from the new domain, the network’s representations 
change to reflect the contingencies of the new domain. If the new domain’s data is 
significantly different from the original data, the network can “forget” [85]. When the 
AI is then confronted with input data similar to that of the original domain, it often 
cannot successfully classify the data because the corresponding representations have 
been overwritten [86]. While this may be acceptable for ANNs that only works and will 
work in the new domain, the performance of a network that is expected to switch be-
tween the domains suffers significantly. To encounter this issue of co-called “cata-
strophic forgetting” [85, 86] various strategies have been proposed [85-87] which have 
in common that they aim to segment the representations in a network and thereby, pri-
oritize the learned representations and constituents that were useful in the original do-
main. Through this segmentation methods, constituents of representations become 
more disentangled which, in turn, allows to forget them more systematically respec-
tively allows to forget unrequired parts independent from the required ones.  

4 Conclusions, limitations and further research avenues 

This paper has introduced a framework to describe the lifecycle of representations in 
artificial neural networks, from the representations’ birth to their loss. We presented a 
template to characterize representational change across three dimensions—composi-
tional, hierarchical, and temporal—and detailed the processes of abstract primitives’ 
integration, perceptual primitives’ integration, abstraction, differentiation, assembly, 
and deletion. The framework offers a foundation for understanding representational dy-
namics in ANNs and potentially can serve as a basis to computationally describe the 
development of representations in ANNs. 
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However, several limitations exist. One of the implicit assumptions of our frame-
work is that there is a prototypical form of information that can be consistently repre-
sented across different ANN architectures. This assumption presents significant chal-
lenges. Representational structures may vary widely between architectures due to dif-
ferences in learning mechanisms, layer configurations, or data inputs. These variations 
cast doubt on the universality of the processes we outline, as what constitutes a “repre-
sentation” may differ significantly across networks. Future research should critically 
investigate whether such a prototypical representation exists or if architecture-specific 
models are required to better capture the distinct characteristics of different systems. 

The current work focuses primarily on the input and output structures of representa-
tional transformations, without describing the underlying transformation mechanisms 
that drive these transitions. According to the definition provided in this paper, transfor-
mation mechanisms describe the causal operations that explain how an input structure 
leads to a particular output structure. However, this paper’s scope was limited to mod-
elling structural changes in representations, leaving the mechanisms themselves largely 
unexplored. 

The completeness of the representations’ lifecycle framework, as illustrated in Fig. 
5, derives from its ability to encompass all necessary processes that govern the evolu-
tion of representational states across compositional and hierarchical dimensions. The 
graph explicitly shows how movements along these axes—whether through abstrac-
tion, differentiation, assembly, or deletion—can capture any possible state of a repre-
sentational capacity. The framework assumes that any representational state can be 
reached starting from an initial set of primitives by applying these processes. While this 
is merely theoretical completeness, future work must investigate whether it holds across 
varying neural architectures, where differing mechanisms may affect the actual path-
way of representational change. 

Finally, formalizing the lifecycle framework is an essential next step. While the cur-
rent work provides a conceptual and graphical representation of the processes, a math-
ematical model would enhance precision and allow for empirical validation. Moreover, 
future studies should map the processes outlined—such as abstraction, differentiation, 
and assembly—onto specific neural activities observed in ANNs. This would enable a 
deeper understanding of representational dynamics and offer more universally applica-
ble insights across architectures. 

 

 
Fig. 5. Minimal set of processes describing representational development “completely” along 

the compositional and hierarchical dimensions  
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