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Abstract. The paper focuses on the convergence between artificial neu-
ral networks (ANNs) and biological neural systems, addressing the chal-
lenges of establishing a "morphic relation" between the two. The central
problem lies in replicating biological neural networks’ dynamic, adaptive,
and self-organizing properties within artificial constructs. Neuromorphic
engineering (NE), an interdisciplinary field at the intersection of neuro-
science and computer science, seeks to design ANNs that emulate biolog-
ical systems’ structure, function, and temporal dynamics. While ANNs
have succeeded in areas like pattern recognition and natural language
processing, they often need more fluid adaptability and robustness of
biological systems. The paper explores recent advances in deep learning
models, particularly deep neural networks (DNNs), and their ability to
capture structure-sensitive cognitive properties. Challenges remain de-
spite promising findings, such as meta-learning techniques and system-
atic generalization. DNNs, though efficient, often exhibit opaque and
fragile learning mechanisms. The paper advocates further exploring the
criteria to establish a genuine morphic relation between ANNs and bio-
logical neural systems, emphasizing structural, functional, and dynamic
correspondences to advance the neuromorphic engineering field.

Keywords: Artificial Neural Networks · Vector Grounding Problem ·
Morphic Problem · Neuromorphic Engineering.

1 Introduction

The development of the connectionist paradigm, especially through modern deep
neural networks (DNNs), has profoundly impacted long-standing debates in cog-
nitive science and the philosophy of mind. Historically, connectionism faced sharp
critiques from proponents of the language of thought hypothesis. Critics ar-
gued that connectionist models either failed to represent cognition adequately
or merely implemented classical symbol manipulation without offering a genuine
alternative (Fodor and McLaughlin, 1990; Fodor and Pylyshyn, 1988; Pinker
and Prince, 1988). They contended that connectionist models could not capture
essential structure-sensitive properties of cognition, such as systematicity (the
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capacity to understand and produce an infinite number of sentences) and pro-
ductivity (the ability to generate and comprehend novel sentences), largely due
to the absence of compositional representations in these models.

In the current era of deep learning, this debate has resurfaced with renewed
vigor. Critics argue that if DNNs can match human-level performance across
a range of cognitive tasks, they must possess features central to language-of-
thought architectures (Marcus, 2018; Quilty-Dunn et al., 2023). However, pro-
ponents of connectionism suggest that human cognition may not be as strictly
rule-governed as classicists claim. They argue that connectionist models can
account for structure-sensitive cognitive properties without fully replicating the
architecture of symbolic models (Johnson, 2004; Smolensky, 2022; Elman, 2019).

Recent advancements in DNNs, mainly through studies on systematic com-
positional generalization, offer promising evidence that connectionist models can
bridge the gap with classical theories of cognition. For instance, Lake and Ba-
roni (2023) demonstrated that a transformer-based network, trained via meta-
learning on various tasks, achieved systematic generalization akin to human-like
learning in few-shot tasks. This meta-learning network involved training on a
stream of artificial tasks with an underlying “interpretation grammar”, achiev-
ing high accuracy and human-like error patterns without explicit compositional
rules. Similarly, Murty et al. (2023) found that training a network beyond op-
timal accuracy on training data could lead to better generalising hierarchical
rules. These findings suggest that modern DNNs may approximate the structure-
sensitive properties of cognition without relying on explicit symbolic manipula-
tion. However, this interpretation depends on assumptions about implementing
cognitive properties in DNNs and their relevance to broader cognitive theories
(McGrath et al., 2023; Pavlick, 2023). Moreover, mechanistic interpretability re-
search reveals that while DNNs can acquire variable binding mechanisms, these
remain “fuzzy” and are not functionally equivalent to the discrete symbol ma-
nipulation found in classical systems (Olsson et al., 2022). Consequently, while
DNNs can compute over compositional representations with constituent struc-
ture, this structure is non-classical and exhibits degrees of role-filler indepen-
dence, challenging classical notions of cognition.

Now, the paradigm seems to shift again towards Neuromorphic Engineer-
ing (NE), an interdisciplinary field at the intersection of neuroscience, computer
science, and electrical engineering, dedicated to designing artificial systems that
emulate the architecture and dynamics of biological neural networks. Originating
from the desire to overcome the limitations of traditional computing paradigms,
neuromorphic engineering seeks to create hardware and algorithms inspired by
the nervous system’s efficiency, adaptability, and robustness. By replicating neu-
ral structures and processes, this field aims to develop artificial neural networks
(ANNs) that perform complex computations with greater efficiency and capture
the essence of biological cognition. The morphic relation between ANNs and
biological neural systems is central to neuromorphic engineering. This relation
involves establishing correspondences in structure, function, and dynamics be-
tween artificial and natural neural networks. The goal is not merely to mimic
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superficial aspects of the brain but to embody the fundamental principles that
underlie neural computation and learning. Neuromorphic systems aspire to repli-
cate features such as synaptic plasticity, spike-timing-dependent processing, and
energy-efficient information transmission: these are properties that give biologi-
cal neural networks their remarkable capabilities. Neuromorphic engineering also
confronts the morphic problem: the difficulty of fully capturing the adaptive,
context-dependent, and self-organizing properties of biological neural networks
within artificial constructs. While ANNs have achieved impressive feats in pat-
tern recognition, language processing, and even game playing, they often lack
the fluid adaptability and resilience of their biological counterparts. Biological
neurons operate within a rich milieu of biochemical signals, structural plasticity,
and environmental interactions that are challenging to replicate artificially.

The pursuit of a morphic relation necessitates satisfying specific criteria, in-
cluding structural correspondence (mirroring neural architectures), functional
equivalence (replicating neural operations), dynamic coherence (aligning tempo-
ral behaviors), contextual integration (embedding within larger systems), and
robustness (maintaining functionality under stress). Neuromorphic engineering
endeavors to meet these criteria, pushing the boundaries of how closely artifi-
cial systems can approximate biological ones. So, this paper aims to foster the
analysis of the conceptual challenges posed by the potential morphic relation
between artificial neural networks (ANNs) and biological neural systems. Specif-
ically, it focuses on identifying and articulating the criteria that are necessary
and sufficient to establish such a morphic relation.

2 Deep learning models and cognition

Deep learning models have emerged as a significant focus in cognitive science,
sparking optimism and scepticism about their potential to serve as cognitive
models. These models, notably deep neural networks (DNNs), offer a new lens
through which to examine cognitive processes, primarily due to their ability to
learn and generalise across vast amounts of data, sometimes in ways that parallel
human cognition. However, this promise is met with considerable debate as the
capabilities and limitations of DNNs in truly capturing cognitive phenomena are
scrutinised. Understanding the strengths and weaknesses of deep learning models
as cognitive models requires a deep detour into their underlying mechanisms,
their performance in cognitive tasks, and the philosophical implications of their
use in modelling cognition.

One of the primary advantages of deep learning models as cognitive models is
their ability to handle vast amounts of data and learn complex patterns without
requiring explicit programming of rules or symbolic structures. This characteris-
tic is particularly significant in cognitive science, where human cognition involves
processing and integrating vast amounts of sensory and experiential data. For
instance, DNNs have shown remarkable success in visual recognition, natural lan-
guage processing, and game playing, often achieving or surpassing human-level
performance. These successes suggest that DNNs can, in some respects, model
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human cognition’s flexible, adaptive, and non-linear nature. Unlike classical sym-
bolic models, which often rely on pre-defined rules and structures, DNNs learn
representations and associations directly from data, which more closely mirrors
the learning processes observed in humans. This ability to model complex, non-
linear relationships makes DNNs powerful tools for simulating cognitive processes
such as perception, language understanding, and decision-making.

Moreover, DNNs have demonstrated an ability to generalise from limited
data, capturing human-like reasoning and learning aspects. For example, re-
search has shown that with appropriate training regimes, such as meta-learning,
DNNs can achieve systematic generalisation—an ability previously thought to
be a hallmark of symbolic cognitive architectures. The work of Lake and Ba-
roni (2023) is particularly illuminating in this regard, as they demonstrated that
transformer-based networks could achieve human-like generalisation in few-shot
learning tasks. It suggests that, under certain conditions, DNNs can mimic hu-
man cognition’s compositional and systematic properties, challenging the long-
held belief that such properties are exclusive to symbolic models. The potential
for DNNs to model cognitive tasks without relying on pre-defined rules opens
new avenues for understanding how cognitive processes might be implemented in
the brain, offering a more biologically plausible alternative to classical models.

However, the advantages of DNNs as cognitive models come with significant
caveats. One of the primary criticisms is that while DNNs can achieve human-
like performance on specific tasks, the mechanisms by which they do so are often
opaque and difficult to interpret. This “black box” nature of deep learning mod-
els contrasts sharply with the transparency of classical symbolic models, where
the rules and operations are explicitly defined and easily understood. The lack
of interpretability in DNNs raises concerns about their utility as cognitive mod-
els, as it becomes challenging to map the learned representations and processes
in DNNs onto known cognitive and neural mechanisms. If cognitive modelling
aims to replicate human behaviour and explain the underlying processes, then
the opacity of DNNs presents a significant obstacle. Understanding how DNNs
process information, make decisions and generalise requires complex techniques
from mechanistic interpretability, which is still in its infancy and far from pro-
viding a comprehensive understanding of these models.

Another significant limitation of DNNs as cognitive models is their reliance
on vast amounts of data and computational resources, which may not reflect
how human cognition operates. Human learners often generalise from a few ex-
amples, demonstrating a remarkable ability to learn efficiently and robustly in
environments where data is scarce or noisy. In contrast, DNNs typically require
large datasets to achieve high performance, and their generalisation abilities can
be fragile, especially when faced with out-of-distribution examples or adversarial
attacks. This discrepancy raises questions about the ecological validity of DNNs
as models of human cognition. If human cognition is characterised by its effi-
ciency and robustness in learning from limited data, then models that require
extensive data and careful tuning may not accurately capture the essence of
human cognitive processes.
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Additionally, while DNNs have shown promise in modelling specific cognitive
tasks, they may fall short in capturing higher-order cognitive processes such as
abstract reasoning, theory of mind, and complex decision-making. These pro-
cesses often involve symbolic manipulation, logical reasoning, and the ability to
understand and generate explanations—capacities that are traditionally associ-
ated with classical cognitive architectures. While there have been advances in in-
tegrating symbolic reasoning with deep learning (e.g., neural-symbolic systems),
these approaches are still in their early stages and have yet to fully demonstrate
that DNNs can model the full range of human cognitive abilities. The challenge
lies in bridging the gap between the associative, pattern-based learning that
DNNs excel at and the more structured, rule-based reasoning that characterises
much of human cognition.

Thus, using DNNs as cognitive models raises essential questions about the
nature of representation and computation in cognitive systems. Critics argue
that DNNs, even when they achieve human-like performance, may do so in fun-
damentally different ways from how the human brain operates. For instance,
while DNNs can learn compositional representations, these representations are
often “fuzzy” and lack the discrete, rule-governed structure that characterises
classical symbolic representations. This fuzziness challenges the classical notion
of cognitive architectures based on clear, well-defined symbols and rules, leading
to debates about whether DNNs can be considered cognitive models or repre-
sent a fundamentally different kind of computation. Whether DNNs implement
a form of the “language of thought” or offer a new paradigm for understanding
cognition remains an open and contentious issue in cognitive science.

In conclusion, deep learning models, particularly DNNs, offer exciting possi-
bilities and significant challenges as cognitive models. Their ability to learn from
data and generalise across tasks aligns them with crucial aspects of human cog-
nition, making them valuable tools for exploring cognitive processes. However,
their opacity, data requirements, and potential misalignment with higher-order
cognitive functions highlight the limitations of these models. As research ad-
vances, DNNs will likely play an increasingly important role in cognitive science,
but whether they can fully capture the complexities of human cognition or need
to be integrated with other approaches remains a critical question. The ongoing
dialogue between proponents of connectionist and symbolic models will likely
shape the future of cognitive science as researchers strive to develop models that
not only replicate human behaviour but also provide insights into the underlying
mechanisms of the mind.

3 The neuromorphic engineering project

The Neuromorphic Engineering (NE) project explores the dynamic interplay
between natural neural networks (NNNs) and artificial neuromorphic networks
(ANNs). Central to this project is the “morphing relation” between NNNs and
ANNs, which is not merely technical but profoundly philosophical, raising ques-
tions about the nature of intelligence, computation, and consciousness.
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According to Tsur (2022), at the heart of NE lies the comparison between
biological neural networks and artificial spiking neural networks (SNNs). NNNs
operate on principles of real-time adaptive learning, energy efficiency, and decen-
tralised processing. Tsur emphasises that while these biological systems are op-
timised for sparse communication and energy efficiency, ANNs, particularly the
spiking variety, are striving to replicate this in artificial hardware. The challenge,
however, is more than replicating neural architecture—it is about understanding
how the mechanisms underlying NNNs can inspire innovations in ANNs.

The philosophical problem arises when we consider the morphing of concepts
from biology into technology. NNNs evolved over millions of years, optimising
for survival, adaptability, and energy efficiency. By contrast, ANNs are designed
by humans for human purposes—typically to maximise performance on specific
computational tasks. In attempting to bridge this gap, Tsur notes that while
artificial networks like SNNs can mimic certain aspects of their biological coun-
terparts (such as spike-timing-dependent plasticity or STDP), they do so in
fundamentally different contexts. The context of biological intelligence is sur-
vival and adaptability in a dynamic world; the context of artificial intelligence
is task optimisation within a designed framework.

One of the philosophical issues Tsur (2022) raises is whether the two sys-
tems—biological and artificial—are converging towards the same end. If artifi-
cial networks continue to improve, will they one day exhibit the same kind of
intelligence that biological systems possess? Or is the difference between them
irreconcilable? Tsur does not provide a definitive answer but leaves the question
open, inviting readers to reflect on the nature of intelligence and the future of
neuromorphic engineering.

The technological side of the debate focuses on practical implementations.
Tsur delves into how SNNs are constructed using principles of neuromorphic
hardware, including projects like IBM’s TrueNorth chip or Intel’s Loihi chip.
These systems use spiking neurons to mimic biological neurons ’ asynchronous,
event-driven nature. However, the efficiency of such systems is still far from
matching biological systems, particularly in terms of power consumption and
adaptability. Tsur points out that while systems like Loihi have shown promise,
they are still in the early stages of development compared to the complexity of
biological neural systems (Tsur, 2022). He also explores the limitations of neuro-
morphic computing, particularly regarding energy efficiency and scalability. He
acknowledges that while SNNs offer advantages for certain types of computa-
tion—such as real-time pattern recognition and low-power operations—they are
not suitable for all computational tasks. The morphing relation between NNNs
and ANNs, then, is not one of seamless integration but one of careful balancing,
where the strengths of each system are leveraged for specific tasks. Biological
systems may never be fully replicable in artificial hardware, but their inspiration
is invaluable for advancing both fields (Tsur, 2022).
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4 From the vector grounding problem to the morphic
problem

This section discusses a problem similar to the Symbol Grounding Problem in AI
but in the context of connectionist systems like Large Language Models (LLMs)
that use vectors instead of symbols, and its connection to the morphic problem.
This issue is called the Vector Grounding Problem (Coehlo Mollo and Millière,
2023).

The Vector Grounding Problem refers to the challenge faced by LLMs, which
use vectors as numerical representations of text tokens based on statistical re-
lationships. Despite their advanced capabilities, these models manipulate these
vectors without any intrinsic connection to real-world entities or meanings, lead-
ing to outputs that appear meaningful to humans but are inherently ungrounded
in reality. The problem highlights that LLMs, much like symbolic AI systems,
struggle to connect their internal representations (vectors) to the external world,
rendering their outputs devoid of intrinsic meaning. As artificial neural networks
(ANNs), LLMs like GPT-3 operate by processing vectors, yet questions arise
regarding whether these systems can produce genuinely meaningful outputs de-
spite lacking direct interaction with the real world. This problem mirrors the
earlier “Symbol Grounding Problem”, which questioned the capacity of classical
AI systems to ground symbols in real-world referents.

Coehlo Mollo and Millière differentiate five distinct types of grounding dis-
cussed in the literature: referential, sensorimotor, relational, communicative, and
epistemic grounding. While these terms are often used interchangeably, the paper
argues that referential grounding, i.e. the capacity of internal representations to
refer to actual entities in the world, is central to the Vector Grounding Problem.

The authors suggest that some LLMs, especially those fine-tuned with Rein-
forcement Learning from Human Feedback (RLHF), possess the necessary fea-
tures to overcome this challenge. Despite not being embodied or directly mul-
timodal, these models maintain causal-historical relationships with the world
through their training data, which enables them to generate outputs that bear
intrinsic meaning. This claim challenges the assumption that multimodality (us-
ing inputs beyond text) or embodiment is required for an AI system to ground
its representations meaningfully.

Ultimately, the paper argues that current advancements in LLMs show promise
in addressing the Vector Grounding Problem, implying that artificial systems
can potentially develop meaningful representations of the world despite their
disembodied nature.

The Morphic Problem of Artificial Neural Networks (MPANNs) emerges as a
compelling challenge in the pursuit of optimising ANNs by mimicking the struc-
ture and functions of biological neural systems. At its core, the morphic program
seeks to enhance the power and efficiency of ANNs by drawing inspiration from
the remarkable capabilities of the human brain, which processes information
with unparalleled efficiency, adaptability, and generalisation. However, this ap-
proach introduces a paradox: If ANNs, like their symbolic AI predecessors, lack
a direct relationship with the real world, i.e. a relationship that is fundamental
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to the functioning of biological brains, how can we effectively optimise these
networks through a morphic program? This question strikes at the heart of both
the potential and the limitations of biologically inspired AI.

Biological neural networks, such as the human brain, are deeply embedded
in and influenced by their environment. They develop and refine their connec-
tions through continuous interactions with the real world, gaining meaning and
understanding through sensory experiences, embodied action, and evolutionary
processes. The brain’s ability to ground its representations in the real world is
not just a byproduct of its complex structure but also a result of millions of
years of evolution, during which neural architectures were honed to solve spe-
cific survival-related problems in dynamic environments. This grounding is what
enables humans to perceive, understand, and respond to their surroundings in
a meaningful way. Thus, the brain’s architecture is not merely a computational
tool but a deeply integrated system that connects abstract representations to
concrete experiences.

In contrast, ANNs are artificial constructs that, while inspired by the brain’s
architecture, operate within fundamentally different contexts. Unlike biologi-
cal systems, ANNs are trained on data sets that are often divorced from the
sensory-rich and dynamic environments that shape human cognition. These net-
works learn to recognise patterns and make predictions based on vast amounts
of data. However, they do so mainly in statistical and syntactic ways, lacking the
semantic grounding that biological neural networks possess. The ANNs’ vectors,
representing data points or features, are mathematical abstractions that may
correspond to patterns in the training data but do not inherently link to real-
world entities or experiences. As a result, the outputs generated by ANNs, while
sometimes impressively accurate or human-like, are ultimately ungrounded like
biological neural responses.

Therefore, the morphic program, which aims to optimise ANNs by mimick-
ing the structure and functionality of biological brains, must grapple with this
fundamental disconnection. If the goal is to create ANNs that approach the
versatility and adaptability of biological neural networks, merely copying the
brain’s brain’s structure may not suffice. The brain’s power lies not only in its
architecture but also in its deep integration with the sensory and experiential
world—a connection that ANNs currently lack. This raises a crucial question:
Can the morphic program succeed in optimising ANNs without somehow em-
bedding them in a world that allows for meaningful interactions and grounding
of representations?

One potential approach to resolving this issue is to focus on developing ANNs
that incorporate embodied cognition elements. This would involve designing sys-
tems where artificial neural networks are modelled after the brain’s architecture
and embedded in environments that allow real-world interaction. For instance,
integrating ANNs with robotics or other forms of embodied agents could pro-
vide a platform for these networks to develop more grounded and contextually
relevant representations. By engaging with the physical world, these networks
could begin to form associations between their internal vectors and the external
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entities they represent, much like how a child learns about the world through
sensory experiences and interaction.

Moreover, the morphic program could explore the incorporation of multi-
modal learning, where ANNs are trained on diverse data types that simulate
the sensory inputs received by biological organisms. This could involve integrat-
ing visual, auditory, tactile, and proprioceptive data, allowing ANNs to develop
more prosperous and interconnected representations. Such an approach might
help bridge the gap between the statistical patterns recognised by ANNs and
the meaningful, grounded representations seen in biological systems.

However, even with these strategies, the question remains whether ANNs can
genuinely achieve the kind of grounding that biological neural networks possess.
The human brain is a product of evolution, with its structures and functions
finely tuned for survival in a complex and dynamic world. ANNs, on the other
hand, are designed and trained by humans, often for specific tasks that do not
require the broad adaptability and understanding that biological systems have.
While the morphic program can undoubtedly lead to improvements in ANN per-
formance—making them more efficient, flexible, or capable of generalisation—the
extent to which these improvements can replicate the true grounding of biological
systems is uncertain.

The morphic problem also touches on more crucial questions about the na-
ture of meaning and understanding in artificial systems. Even if ANNs could
be designed to mimic the brain’s structure and trained in environments that
provide rich sensory data, would this lead to genuine understanding or merely
the appearance of understanding? This echoes debates in AI regarding whether
machines can ever truly “understand” or whether they simulate understanding
through sophisticated pattern recognition. The grounding problem, whether in
the context of symbols or vectors, suggests that without a connection to the
real-world entities they are meant to represent, any “understanding” in ANNs
may be superficial at best.

Ultimately, the morphic problem challenges researchers to think beyond sim-
ple structural mimicry and consider the broader context in which biological
intelligence operates. It suggests that for ANNs to approach the human brain’s
brain’s capabilities, they must not only mirror its architecture but also engage
with the world in a manner that allows for genuine grounding of their internal
representations. This may require a fundamental shift in how we design and
train ANNs, moving from data-driven approaches to more holistic systems that
integrate learning, embodiment, and interaction with the real world.

In conclusion, the morphic problem of artificial neural networks highlights a
critical challenge in optimising AI through biological inspiration. At the same
time, the brain’s architecture provides a powerful model for ANN design; its true
strength lies in its deep connection to the real world—a connection that current
ANNs lack. To address this, the morphic program must go beyond structural
mimicry and seek ways to embed ANNs in environments that allow for mean-
ingful interactions and grounding. Whether through embodied cognition, mul-
timodal learning, or other innovative approaches, the goal should be to create
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systems that not merely simulate understanding but achieve a form that is as
close as possible to that seen in biological systems. Only then can we hope to
optimise ANNs in a way that genuinely mirrors the power of the human brain.

5 The definition of morphic relationship in neuromorphic
engineering

Neuromorphic engineering is an interdisciplinary field that aims to bridge the
gap between artificial neural networks (ANNs) and biological neural networks by
capturing and replicating the underlying morphic relations—that is, the struc-
tural, functional, and dynamic relationships that define how biological neural
systems operate. These morphic relations encompass the intricate interactions
of neurons and synapses in the brain to process information, adapt to new stim-
uli, and enable complex behaviors. The goal of neuromorphic engineering is to
design artificial systems that not only mimic the architecture of the brain but
also replicate its operational principles. By doing so, it seeks to create more effi-
cient, adaptable, and powerful computing systems that closely resemble human
cognition. At the core of the morphic relations that neuromorphic engineering
seeks to capture is the fundamental structure of neural networks in the brain. Bi-
ological neural networks consist of neurons interconnected by synapses, forming
complex circuits that transmit and process information. These neurons exhibit
a wide range of behaviors depending on the strength and timing of synaptic
inputs, the properties of the neuronal membrane, and the broader network con-
text. Neuromorphic engineering attempts to emulate this complexity by design-
ing ANNs that are deeply rooted in the biological principles governing neural
activity. This includes developing artificial neurons that replicate the nonlinear
dynamics of real neurons and creating synapses that mimic plasticity—the ability
to strengthen or weaken over time—which is essential for learning and memory in
the brain. Plasticity is one of the most critical aspects of morphic relations—the
brain’s ability to adapt its structure and function in response to experience. In
biological systems, synaptic plasticity allows the strength of connections between
neurons to change based on activity, which is crucial for learning and memory for-
mation. Neuromorphic engineering seeks to incorporate similar mechanisms into
ANNs, enabling them to learn and adapt in a manner more akin to human cogni-
tion. This involves developing learning algorithms inspired by synaptic plasticity
processes observed in the brain. For example, spike-timing-dependent plasticity
(STDP), where the timing of neuronal spikes influences synaptic strength, has
been a critical focus in neuromorphic research. By implementing STDP in ar-
tificial systems, engineers aim to create networks that can learn and adapt in
real time, just as the human brain does. Another essential morphic relation that
neuromorphic engineering aims to capture is the energy efficiency of the brain.
Despite its incredible computational power, the human brain operates on only
about 20 watts of power—a fraction of what traditional computers consume.
This efficiency arises from several factors, including sparse coding of informa-
tion (where only a small subset of neurons is active at any given time), parallel
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processing across multiple neural circuits, and the ability to perform complex
computations with low-precision signals. Neuromorphic systems seek to emulate
these energy-efficient strategies by developing hardware that performs computa-
tions in a manner more similar to the brain. For instance, neuromorphic chips
are often designed to use event-driven processing, where computations are per-
formed only when certain conditions are met, much like how neurons fire only
when they receive sufficient input. This approach can significantly reduce power
consumption, making neuromorphic systems more viable for applications where
energy efficiency is crucial. The temporal dynamics of neural activity are an-
other critical aspect of the morphic relations that neuromorphic engineering
seeks to replicate. In the brain, neurons communicate through spikes—brief, all-
or-nothing electrical impulses—that convey information through their rate and
precise timing. The brain’s ability to process information rapidly and in real
time is largely due to these temporal dynamics, where the timing of spikes can
encode complex patterns and relationships. Neuromorphic engineering captures
this aspect by designing ANNs that operate on similar temporal principles. Spik-
ing neural networks (SNNs), for example, are a type of ANN where information
is encoded in the timing of spikes rather than continuous values, allowing for
more biologically realistic models of information processing. By capturing the
temporal dynamics of the brain, neuromorphic systems can potentially achieve
faster and more efficient processing, particularly in tasks that require real-time
responses. Moreover, the connectivity patterns within the brain represent an-
other crucial morphic relation that neuromorphic engineering aims to emulate.
The human brain is characterized by a highly complex and non-uniform network
of connections, with different regions specialized for various functions and con-
nected in intricate ways that allow for both localized and distributed processing.
This connectivity reflects the brain’s evolutionary optimization for specific cog-
nitive tasks like vision, language, and motor control. Neuromorphic engineering
seeks to replicate these specialized connectivity patterns in ANNs by designing
hierarchically organized networks capable of dynamic reconfiguration based on
the task at hand. This might involve developing modular networks where dif-
ferent subsets of artificial neurons are dedicated to different tasks or creating
networks that can rewire themselves in response to new information, much like
how the brain’s connectivity can change over time. In addition to these structural
and functional aspects, the robustness of biological neural networks is another
key morphic relation that neuromorphic engineering aims to capture. The brain
is remarkably resilient, capable of functioning effectively despite noise, damage,
or variability in its components. This robustness arises from factors like redun-
dancy in neural connections, the ability of neurons to compensate for damaged
areas, and the brain’s capacity to filter out irrelevant noise. Neuromorphic sys-
tems aim to replicate this robustness by designing ANNs that can continue to
function even when parts of the network fail or when faced with noisy input. This
might involve developing fault-tolerant architectures with multiple pathways for
information flow or creating networks that can adapt to changes in their en-
vironment without extensive retraining. One of the broader goals of capturing
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these morphic relations is to move beyond the limitations of current ANNs,
which, despite their success in many applications, are still far from replicating
the full range of capabilities exhibited by the human brain. While traditional
ANNs can be powerful tools for pattern recognition and prediction, they often
struggle with tasks requiring real-time processing, adaptability, or understand-
ing of complex, dynamic environments. By capturing the morphic relations that
define how the brain processes information, neuromorphic engineering aims to
create systems that are not only more efficient and adaptable but also capable of
performing a broader range of cognitive tasks in a manner more akin to human
intelligence. However, pursuing these goals presents challenges. Capturing the
full complexity of the brain’s morphic relations requires a deep understanding
of both neuroscience and engineering, as well as the ability to translate bio-
logical principles into computational models. Moreover, much about how the
brain functions—particularly at the level of large-scale networks and their in-
teractions—remains unknown. As such, neuromorphic engineering is as much a
process of discovery as it is of design, with researchers constantly refining their
models as new insights into brain function emerge. In conclusion, the morphic
relations that neuromorphic engineering seeks to capture represent the intricate
interplay of structure, function, and dynamics that characterize biological neural
networks in the human brain. By emulating these relations, neuromorphic sys-
tems aim to replicate the brain’s architecture and operational principles, leading
to artificial systems that are more efficient, adaptable, and capable of human-
like cognition. This approach holds the promise of overcoming the limitations
of traditional ANNs, opening up new possibilities for artificial intelligence that
more closely mirrors the power and flexibility of the human mind. A relation
is morphic if it captures and embodies the structural, functional, and dynamic
correspondences between two systems, allowing one system to be understood,
analyzed, or replicated in terms of the other. Morphic relations go beyond su-
perficial similarities or mere analogies; they reflect a deep correspondence in the
organization, function, and evolution of the systems over time. In the context of
neuromorphic engineering, morphic relations specifically refer to the connections
between ANNs and biological neural networks in the human brain, where the
aim is to replicate not just observable behaviors but the underlying operational
principles that govern the brain’s function.

6 The criteria for a morphic relation in ANNs

The concept of a morphic relation in the context of artificial intelligence refers
to a correspondence between artificial neural networks (ANNs) and biological
neural systems, encompassing structural, functional, and dynamic aspects. This
relation implies that ANNs can replicate or emulate key properties of biological
neural systems to a significant extent. Establishing this relationship requires
satisfying specific criteria that capture the fundamental characteristics of both
systems.
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6.1 Structural Correspondence

Necessary Condition: A morphic relation requires a fundamental structural
correspondence between ANNs and biological neural systems. This means that
the basic components (neurons, synapses) and their interconnections in ANNs
must reflect those found in biological systems.

Sufficient Condition: Structural correspondence is sufficient when the ANN’s
architecture not only mirrors the components and connections but also allows for
the mapping of structural changes from one system to the other while preserving
network integrity and functionality.

6.2 Functional Equivalence

Necessary Condition: For a morphic relation to exist, ANNs must replicate
key functional operations of biological neural systems, such as learning through
synaptic plasticity and processing information via spike-timing dynamics.

Sufficient Condition: Functional equivalence is achieved when ANNs can
perform the same tasks as biological systems with comparable efficiency and
adaptability, producing outputs that are functionally indistinguishable from those
of biological neural networks given the same inputs.

6.3 Dynamic Coherence

Necessary Condition: ANNs must exhibit temporal dynamics that mirror
those of biological systems, including adaptation over time in response to stimuli.

Sufficient Condition: Dynamic coherence is sufficient when ANNs not only
adapt over time but do so in ways that parallel the timing and sequence of
changes observed in biological systems.

6.4 Contextual Integration

Necessary Condition: For a fully morphic relation, the systems must integrate
similarly within their broader contexts. This means that the role each system
plays in its respective environment—such as how a neural network interacts
with other cognitive systems—must be analogous between ANNs and biological
networks.

Sufficient Condition: Contextual integration is sufficient when ANNs can
be embedded into larger frameworks or ecosystems and continue to function
effectively. For example, an ANN with morphic relations to the brain should
interact with other AI systems or datasets in a manner similar to how the brain
integrates sensory inputs and coordinates responses with other cognitive systems.
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6.5 Robustness and Resilience

Necessary Condition: Morphic relations must ensure robustness and resilience
in analogous ways. If a biological network can withstand noise, damage, or vari-
ability, then the ANN must demonstrate similar robustness to maintain its func-
tional capacity.

Sufficient Condition: Sufficient robustness and resilience are demonstrated
when both systems maintain functionality under comparable conditions of stress
or perturbation. This includes the ability to recover from disruptions and con-
tinue performing essential tasks, reflecting the stability of the morphic relation.

In conclusion, a relation is morphic if it profoundly captures the struc-
tural, functional, dynamic, contextual, and resilient aspects of two systems,
enabling one to be understood or replicated in terms of the other. These crite-
ria—structural correspondence, functional equivalence, dynamic coherence, con-
textual integration, and robustness—are both necessary and sufficient to estab-
lish a true morphic relation, ensuring that the systems are not just similar on
the surface but are fundamentally interconnected in their nature.

7 Metodological challenges

Comparing deep neural networks (DNNs) to human cognition presents signif-
icant methodological challenges, particularly when considering the concept of
morphic relations. The "morphic problem" underscores the difficulty of optimiz-
ing artificial neural networks by merely mimicking the biological structures of
the human brain. Meaningful comparisons between DNNs and humans are com-
plex; they require meticulously matched conditions and rigorous experimental
designs that account for the profound differences in how artificial and biological
systems process information and interact with the world. One primary method-
ological challenge is the fundamentally different ways these systems are trained
and operate. Human cognition develops through a lifetime of sensory experi-
ences, embodied interactions, and social learning within a dynamic environment.
In contrast, DNNs are typically trained on static datasets, often consisting of
labeled examples that lack the rich, multimodal experiences shaping human un-
derstanding. This disparity leads to significant differences in how DNNs and
humans represent and process information. To compare these systems mean-
ingfully, researchers must ensure that the conditions under which DNNs are
tested closely mirror those under which humans perform similar tasks. Achiev-
ing such parity is challenging. The data used to train and test DNNs often lacks
the complexity and contextual richness of stimuli humans encounter. For in-
stance, while a DNN might be trained to recognize objects in images based on
pixel patterns and statistical correlations, it does so without the broader con-
textual understanding humans possess. A human recognizes a chair not just by
its appearance but also by its function, its relationship to other objects, and
its cultural significance. Experimental designs must account for these contex-
tual factors, which are often difficult to quantify and incorporate into the data
used for training DNNs. Additionally, DNNs and humans often operate under
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different constraints and objectives. Humans balance a wide range of cognitive
functions—including memory, attention, and emotion—while interacting with a
complex environment. DNNs are typically optimized for a single task or a nar-
row set of tasks, often without consideration for the broader cognitive processes
involved in human performance of the same task. This focused optimization
can lead DNNs to achieve high performance under controlled conditions, but
it does not necessarily mean that their underlying cognitive processes are com-
parable to those of humans. To address these challenges, experimental designs
must carefully control for differences in how DNNs and humans approach tasks.
This might involve creating testing environments for DNNs that better simulate
human experiences. For example, instead of training a DNN on a static dataset,
researchers could use dynamic, interactive environments requiring the DNN to
engage with the world more like humans do. Such environments could provide
feedback based on the DNN’s actions, encouraging the development of represen-
tations grounded in real-world interactions. While this approach requires signif-
icant advancements in how DNNs are trained and tested, it could lead to more
meaningful comparisons with human cognition. Interdisciplinary collaboration is
crucial in designing experiments that compare DNNs to humans. Insights from
psychology, neuroscience, and cognitive science are essential for capturing the
nuances of human thought processes. Similarly, expertise in machine learning
and artificial intelligence is vital for understanding the capabilities and limita-
tions of DNNs. By combining these fields, researchers can design experiments
that more accurately reflect the conditions under which both DNNs and humans
operate, leading to more valid and reliable comparisons. Interpreting results from
such comparisons poses its own challenges. Even when DNNs and humans per-
form similarly on a given task, it does not necessarily mean they use the same
underlying processes. A DNN might classify objects based on statistical regular-
ities, while a human relies on visual features, contextual information, and prior
knowledge. Without understanding the mechanisms underlying each system’s
performance, drawing parallels can be misleading. This underscores the impor-
tance of not only comparing performance outcomes but also investigating the
processes leading to those outcomes. Techniques like neuroimaging in humans
and feature visualization in DNNs can provide insights into internal representa-
tions and processes, but interpreting these results requires careful consideration
of the differences between artificial and biological systems. Another method-
ological challenge arises from the inherent differences in scale and complexity
between human brains and DNNs. The human brain is vastly more complex,
with approximately 86 billion neurons interconnected in intricate networks sup-
porting a wide range of cognitive functions. DNNs, while inspired by the brain,
are simplified models with far fewer neurons (or units) and connections. This
difference in scale means that even if a DNN replicates a specific human behav-
ior, it might do so in a way that is not scalable to the broader, more complex
tasks humans perform. Experimental designs must, therefore, be cautious in
extrapolating findings from specific tasks to broader claims about human-like
cognition in DNNs. The issue of interpretability also plays a crucial role. Hu-
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man cognition, though not fully understood, is generally interpretable to some
extent through introspection, behavioral analysis, and neuroscience. DNNs often
function as "black boxes," where the internal processes leading to a particular
output are difficult to decipher. This opacity makes it challenging to determine
whether a DNN’s behavior truly mirrors human cognition or is simply a coin-
cidental outcome of its architecture and training data. Developing methods to
improve the interpretability of DNNs, such as analyzing activation patterns or
using techniques like saliency mapping, is essential for making more meaning-
ful comparisons. In conclusion, comparing DNNs to humans presents significant
methodological challenges stemming from differences in training, information
processing, and environmental interactions. The morphic problem highlights the
limitations of optimizing DNNs solely by mimicking biological structures, and
these limitations extend to experimental designs used in comparisons. To make
these comparisons meaningful, researchers must carefully match conditions be-
tween the two systems, considering contextual richness, cognitive complexity,
and result interpretability. This requires sophisticated experimental designs and
collaborative efforts across disciplines to ensure that comparisons between DNNs
and human cognition are valid and insightful. By addressing these methodolog-
ical challenges, we can advance our understanding of both artificial and human
intelligence, moving closer to creating AI systems that reflect the capabilities of
the human mind.

8 Conclusion

This paper on the assumption of the NE project examines the convergence
between natural neural networks (NNNs) and artificial neuromorphic systems
(ANNs), presenting an exploration of the “morphic problem” This issue, central
to NE, underscores the challenge of translating the flexible, adaptive nature of
biological neurons into artificial systems, which often rely on static, rigid ar-
chitectures. Neuromorphic systems, inspired by the brain’s neural architecture,
aim to replicate its efficiency, adaptability, and energy usage while addressing
the philosophical and technical complexities that arise from this convergence.

One core aspect of the morphic problem involves the difficulty in mapping
biological neural networks’ dynamic plasticity and continuous learning abilities
onto artificial networks. Natural neural networks possess dynamic synapses, non-
linear interactions, and the ability to reorganise themselves in response to stimuli,
creating a level of flexibility that artificial systems struggle to mirror. Artificial
networks, especially early ANNs, often rely on pre-defined architectures and
rules, limiting their adaptability. This fundamental gap represents a critical ele-
ment of the morphic problem: the tension between the static nature of artificial
systems and the fluid, evolving properties of natural neurons.

In addressing the morphic problem, the paper explores the role of spiking neu-
ral networks (SNNs), which attempt to bridge this gap by emulating biological
neurons’ time-dependent, spike-based communication system. SNNs represent
a significant advancement in neuromorphic computing by mimicking the asyn-
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chronous, event-driven processing found in the brain, such as how neurons fire
in response to stimuli or how the brain processes sensory information. However,
despite these innovations, challenges persist. SNNs, while capable of performing
specific tasks such as pattern recognition and cognitive functions, still fall short
of the biological system’s scalability, adaptability, and efficiency. The computa-
tional power of biological neurons, honed through millions of years of evolution,
surpasses what current artificial systems can replicate.

To push beyond these limitations, the paper discusses advanced neuromor-
phic hardware solutions, such as memristors and crossbar architectures, which
offer promising avenues for creating more flexible, scalable, and energy-efficient
systems. These technologies can potentially address the morphic problem by en-
abling artificial systems to emulate the brain’s computational efficiency more
closely. By moving beyond traditional computing paradigms, neuromorphic en-
gineering aims to create systems that simulate and extend biological neural net-
works’ capabilities, offering a hopeful future for the field.

The morphic problem extends beyond mere technical limitations; it focuses
on the nature of intelligence and computation and the possibility of creating
genuinely neural-like computation in machines. While neuromorphic systems can
approximate the brain’s architecture and functions, they remain fundamentally
artificial constructs constrained by human design and technological boundaries.
The paper argues that solving the morphic problem may require a more profound
rethinking of what it means to compute, challenging us to move away from direct
imitation of nature toward developing systems that merge biological principles
with new computational paradigms.

In conclusion, the morphic problem in neuromorphic engineering is both a
technical and conceptual challenge, highlighting the difficulties inherent in repli-
cating the adaptability and plasticity of natural neural networks within artificial
systems. By addressing this problem, neuromorphic engineering has the poten-
tial to revolutionise computing, paving the way for breakthroughs in fields such
as artificial intelligence, robotics, and bioinformatics. For instance, solving the
morphic problem could lead to the development of more adaptive and efficient
learning algorithms. In robotics, it could enable the creation of more human-
like and adaptable robots. In bioinformatics, it could enhance our understand-
ing of biological systems and their computational principles. The paper also
underscores that while technology can approximate the workings of the brain,
achieving proper neural-like computation may require a fundamental shift in our
understanding of biology and computation.
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