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Abstract. Previous research has investigated the criteria for evaluat-
ing the readability of geometric proofs generated by theorem provers,
with a particular focus on human readability. In particular, Graziani and
Quaresma [14] focused on the readability of geometric proofs produced
by theorem provers implementing the area method. Building on their
work, this study analyzes the machine’s performance during the proof
process, specifically regarding CPU time. The aim is to assess whether
this analysis uncovers significant differences in readability criteria be-
tween humans and machines and to identify potential improvements to
better align human and machine readability.

1 Introduction

Automated Theorem Proving (ATP) is a well-established area of research in
mathematics, boasting numerous methods and results alongside many open
problems that highlight its vitality. Among the various domains within ATP,
geometry stands out due to its history and the challenging problems it proposes.

Two prominent challenging problems in ATP are particularly noteworthy:
the simplicity of a proof and the readability of a proof.

– The first problem seeks a criterion to quantify the simplicity of a proof.
– The second problem seeks a criterion to quantify the readability of a proof.

Regarding the simplicity problem, historical contributions from scholars such
as David Hilbert, who proposed a framework for identifying the simplest possible
proofs [2,3,17], and Émile Lemoine [9], who introduced the notion of Geometro-
graphy to measure the simplicity of geometric constructions underscore the en-
during importance of this concept. Recent advancements in automated theorem
proving have refined these studies on simplicity. For instance, Pierluigi Graziani
and Pedro Quaresma’s modernisation of Lemoine’s Geometrography [14,15,16]
exemplifies contemporary efforts to integrate historical methods with cutting-
edge technology. Their modernisation leverages tools and automated proving
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Fundação para a Ciência e a Tecnologia, I.P., in the framework of the Project
UIDB/00326/2020 and UIDP/00326/2020.
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methods, such as the Geometry Constructions LATEX Converter (GCLC ) and
the area method [4,6] to create a more robust framework for evaluating the sim-
plicity of geometric constructions and of formal proofs produced by automated
theorem provers.

Concerning the readability problem, it is a cornerstone of mathematical com-
munication. Readability refers to the ease with which a reader can comprehend
a written text, distinct from legibility, which pertains to recognising individual
characters. To our knowledge, there are two precise proposals to measure the
readability of a proof: the first by Chou et al. [1], and the second by Freek
Wiedijk [18], known as the de Bruijn factor. Also, in this case, recent advance-
ments in automated theorem proving have refined these studies on readability.
Graziani and Quaresma [14], dissatisfied with the previous criteria—one being
too restrictive and the other too general—applied methodologies from the study
of simplicity to explore the readability of geometric proofs, proposing not only
their criterion but also a general methodology for analysing this characteris-
tic in the context of proofs produced via the area method. By enhancing the
readability of these proofs, they aimed to make complex mathematical concepts
more accessible to a broader audience, thereby bridging the gap between auto-
mated systems and human mathematicians. Improving readability not only aids
human understanding but also enhances the ability of automated systems to
communicate their results effectively.

The study of the simplicity and the readability issues led Graziani and
Quaresma to analyse interesting elements in the geometric proofs. Given a math-
ematical proof as a sequence of steps (the proof script), in addition to the coeffi-
cient of simplicity, CSproof , giving the simplicity coefficient for the overall proof,
it is possible to consider other coefficients, e.g.,

– CSgcl, simplicity coefficient for the geometric construction (the conjecture);
– CTproof , the total number of steps in the proof;
– CSproofmax, the highest simplicity coefficient of the lemmas/definitions ap-

plications, it gives the simplicity coefficient for the most difficult step of the
proof;

– CDtypeproof , the number of different types of lemmas used in the proof;
– CDhighproof , the number of different steps of high difficulty in the proof;

and also

– The proof script (all the steps in the formal proof);
– The corresponding line chart or proof trace, given by the simplicity coefficient

of each step.

Graziani and Quaresma called these coefficients the, Geometrographic Coef-
ficients.

Let’s consider, for example, the Ceva’s theorem.

Theorem 1 (Ceva’s Theorem, [6]). Let ∆ABC be a triangle and P be any
point in the plane. Let D = AP ∩CB, E = BP ∩AC, and F = CP ∩AB. Show
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Fig. 1. Geometric Construction, Ceva’s Theorem

that: AF
FB

× BD
DC

× CE
EA

= 1. P should not be in the lines parallels to AC, AB and
BC and passing through B, C and A respectively.

The proof script of Ceva’s theorem, produced by the GCLC prover based
on the area method, has all the details explained, and it fills two pages, almost
three pages if the notes about the non-degeneracy conditions and the proof itself
are considered (see [14]).

The Geometrographic coefficients of Ceva’s Theorem Proof are the following:

Ceva′s Theorem



CSproof = 220
CSgcl = 22

CTproof = 32
CSproofmax = 84
CDtypeproof = 3
CDhighproof = 0

The line chart (or proof trace) is shown in figure 2. In it, the sequences of
algebraic simplifications are condensed in only one step (for a more condensed
view of the graph).

What does this line chart describe? This line chart is based on assumptions
about certain parameters’ weight (efforts) on human readability (high, medium,
and low) of a geometric proof. It graphically represents the progress of the proof
with weights associated with the various steps, expressing their difficulty via
their simplicity (complexity) coefficient.

It can be asked whether these assumptions and weights reflect values solely
related to the human being proving the theorem or if they also pertain to the
effort exerted by the machine’s processors in constructing the proof. In other
words, if the line chart resembles an electroencephalogram, as Graziani and
Quaresma wrote [14], can it be considered also a kind of electroencephalogram
of the machine during the theorem proving? Or are the encephalograms related
to the human-proving activity and the machine-proving activity different from
each other?
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Fig. 2. Ceva’s Theorem, Geometrography Proof Trace

Building on these foundational concepts and issues, this paper explores a
novel objective with respect to [14]: comparing the complexity of line charts
produced in geometric constructions with the computational effort required by
the processors executing the theorem proving. By examining the correlation be-
tween human readability and the underlying machine computational processes,
the authors aim to understand whether the weights/efforts assumed for humans
reflect the machine’s efforts in its proof process. This exploration is particularly
pertinent in modern computational resources, where the processor’s effort in ex-
ecuting theorem-proving tasks can vary significantly based on task complexity.
It is possible to identify patterns and correlations indicating the computational
load involved by systematically analysing the charts representing these geomet-
ric proofs. Such insights can inform the development of more efficient algorithms
and systems, ultimately contributing to the advancement of automated theorem-
proving technologies.

Overview of the paper. The paper is organised as follows: Section 2 pro-
vides an introduction to GCLC ; Section 3 summarises Graziani and Quaresma’s
research on simplicity and readability; Section4 describes the methodology for
analysing processor activity; Section 5 compares the graphical representation of
the proof of the theorem and processor activity; Section 6 presents the conclu-
sions and future work.

2 GCLC (from Geometry Constructions → LATEX
Converter)

GCLC (Geometry Constructions → LATEX Converter),1 developed by Predrag
Janičić [4], is a specialised software tool designed to facilitate the creation of geo-

1 https://github.com/janicicpredrag/gclc

https://github.com/janicicpredrag/gclc
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metric constructions and their seamless conversion into LATEX format. This tool
bridges the gap between geometric visualisation and high-quality typesetting,
making it invaluable for educational and research purposes in mathematics.

GCLC describes geometric constructions using a simple and intuitive lan-
guage known as gcl [5]. This language allows users to define points, lines, circles,
and other geometric objects and specify their relationships and constructions.
The core idea is to use a sequence of primitive construction steps, such as draw-
ing a line between two points, finding the intersection of two lines, or drawing
a circle given its centre and a point on the circumference. These primitive steps
can be combined to form more complex constructions.

To illustrate the capabilities of GCLC, consider the following example, which
constructs a basic geometric figure, a triangle with a circumcircle. The gcl code
for this example is as follows:

%%% Construct ive s t ep s
point A 50 65
point B 45 35
point C 90 35
med a C B
med b A C
intersec O a b

%%% Drawing s t ep s
cmark lt A
cmark lb B
cmark rb C
drawsegment A B
drawsegment B C
drawsegment C A
drawcircle O A

Listing 1.1. gcl—Specification—Triangle & circuncircle

The gcl language has commands to build the geometric construction and
commands to draw the corresponding figure. This code (see Listing 1.1) de-
fines three points, A, B, and C, with their respective coordinates, the segments
CB and AC perpendicular bisectors (mediatrice), and the intersection of those
two lines, the point O, the centre of the circuncentre. The construction geo-
metric construction is independent of the coordinates, which are solely used to
draw the figure. The cmark command marks these points on the figure. The
drawsegment commands are used to draw the sides (segments) of the triangle
ABC and drawcircle command constructs the circumcircle passing through the
three vertices of the triangle. As it can be seen by this example, the construction
and the drawing are two separate parts of a gcl specification. A user cannot
draw an non-existing element, but what to draw, or not, is a user’s decision.
From the automated theorem provers, embedded in GCLC, point of view, the
drawing section is superfluous.
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Once the gcl file (e.g., triangle.gcl) is created, it can be processed by
GCLC to generate a LATEX file.

This process integrates the geometric figure into the LATEX document, ensur-
ing the final output is mathematically precise and visually appealing.

A

B C

Fig. 3. gcl—Drawing—Triangle & circuncircle

GCLC also supports more advanced geometric constructions and transfor-
mations see [4,5] and also the manual, distributed with the software.

GCLC also contains a set of embedded automated theorem provers for ge-
ometry, e.g. the one based in the Area Method [6,7,8].

3 GCLC and Geometrography

Geometrography, “alias the art of geometric constructions”, aims at providing
a tool: (i) to designate every geometric construction by a symbol that mani-
fests its simplicity and exactitude; (ii) to teach the simplest way to execute an
assigned construction; (iii) to discuss a known solution to a problem and even-
tually replacing it with a better solution; (iv) to compare different solutions for
a problem, by deciding which is the most exact and the simplest solution from
the point of view of Geometrography.

Émile Lemoine [9] in his Geometrography defined two coefficients to measure
the relative difficulty of performing some geometric constructions. The approach
is applied to ruler and compass geometry, i.e., geometric constructions made only
with the help of a ruler and a compass. Considering the modifications proposed
by John S. Mackay [10], the following Ruler and Compass constructions and the
corresponding coefficients can be analysed.

To place the edge of the ruler in coincidence with one point . . . . . . . . . . . .R1

To place the edge of the ruler in coincidence with two points . . . . . . . . . .2R1

To draw a straight line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R2

To put one point of the compasses on a determinate point . . . . . . . . . . . . . C1
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To put the points of the compasses on two determinate points . . . . . . . . 2C1

To describe a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C2

Then a given construction is measured against the number of uses of those
elementary steps. For a given construction expressed by the equation:

l1R1 + l2R2 +m1C1 +m2C2

where li and mj are coefficients denoting the number of times any particular
operation is performed. The number (l1 + l2 +m1 +m2) is called the coefficient
of simplicity of the construction, and it denotes the total number of operations
performed. The number (l1 + m1) is called the coefficient of exactitude of the
construction and it denotes the number of preparatory operations on which the
exactitude of the construction (made with the help of physical, inaccurate, tools)
depends [10,11].

Classical Geometrography applies to geometric constructions made with the
help of a ruler and a compass. Graziani and Quaresma proposed a modernisation
and generalisation of classical Geometrography in [14,15,16] using the tools of the
dynamic geometry systems (DGS) and using GCLC .

Considering the operations: define a point, anywhere in the plane, D and
define a given object, using other objects, C, the following values for the GCLC
basic constructions are obtained:

point – fix a point in the plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D
line – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
circle – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
intersec – uses two lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
intersec – uses four points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4C
intersec2 – uses a circle and a circle or line . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
midpoint – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
med – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
bis – uses three points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3C
perp – uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
foot – uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
parallel – uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
onsegment – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
online – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C
oncircle – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

In the modernisation of the Geometrography, the coefficient of exactitude
loses its meaning; the DGS executes the constructions, so they are accurate (ex-
act). However, the coefficient of simplicity of the constructions can still be useful.
It can be used to classify constructions by levels of simplicity. A new dimension
can also be added, the coefficient of freedom, given by the degree of freedom a
given geometric object has, e.g., “a point in a line” has one degree of freedom,
a point in the plane has two degrees of freedom, etc. This new coefficient gives
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a value to the dynamism of the geometric construction. Graziani and Quaresma
calculated these coefficients for all constructions in the TGTP repository [12].2

For the GCLC constructions contained in TGTP an average value of simplicity
(CSgcl) of 20.8 was obtained. Using the k-means clustering function implemented
in the statistics package of Octave,3 three classes of geometric constructions, de-
scribing an increasing level of complexity, were defined: simple constructions,
1 ≤ CSgcl ≤ 18; average complexity constructions, 18 < CSgcl ≤ 28; complex
constructions, CSgcl > 28. TGTP contain 71 simple constructions; 81 average
complexity constructions; 28 complex constructions.

A

B C

D

E

F

G

CSgcl = 19 = 3D+ 16C

CFgcl = 6

Fig. 4. Geometric Construction, TGTP problem GEO0369

For example (TGTP problem GEO0369): “In triangle ∆ABC, let F be the
midpoint of the side BC, and D and E the feet of the altitudes on AB and AC,
respectively. FG is perpendicular to DE at G. Show that G is the midpoint of
DE”, has a geometric construction with a coefficient of simplicity 19 (see Fig. 4),
so an average complexity construction, and coefficient of freedom 6.

Graziani and Quaresma used the same approach to take into consideration
of synthetic geometric proofs, i.e., proofs based on a geometric axiomatic the-
ory, using geometric inference rules. Considering the proofs produced by the
Geometric Automated Theorem Prover (GATP) GCLC , implementing the area
method [4,6], they calculated the coefficient of simplicity for all the axioms and
lemmas of the theory.

Apart from the geometric constructions in which the proof is based (with the
coefficient of simplicity nCnst), other steps must be considered.

(Elementary) Algebraic Simplification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (AS)

2 http://hilbert.mat.uc.pt/TGTP/
3 GNU Octave, version 6.1.1, package octave-statistics, function means https://

octave.sourceforge.io/statistics/function/kmeans.html

http://hilbert.mat.uc.pt/TGTP/
https://octave.sourceforge.io/statistics/function/kmeans.html
https://octave.sourceforge.io/statistics/function/kmeans.html
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(Elementary) Geometric Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GS)
Application of the Area Method Lemma n . . . . . . . . . . . . . . . . . . . . . . . (AMLn)

A given proof can thus be measured against the number of those steps.4 For
a given proof expressed by the equation:

n1Cnst+ n2AS+ n3GS+

lk∑
j=l1

AMLj

The coefficient of simplicity for the proof would be:

CSproof = n1 + n2 + n3 +

lk∑
j=l1

CSproof(AMLj)

The coefficient of freedom has no meaning in this setting.
Each lemma of the area method, AMLj, has a corresponding simplicity co-

efficient, the term,
∑lk

j=l1
CSproof(AMLj), is the sum of all those values, for all

the lemmas used in the proof. To achieve this for each area method lemma, the
corresponding simplicity coefficients were calculated [13].

Given that a mathematical proof is a sequence of steps, in addition to the
coefficient of simplicity, Graziani and Quaresma defined the other coefficients
shown in the first section: e.g., the total number of steps in the proof; the value
of the most difficult step in the proof; the number of different steps of high
difficulty in the proof; the number of different types of steps (lemmas) in the
proof; a proof script; a numerical description of the proof; and a corresponding
line chart or proof trace.

It is important to note that to obtain the coefficient CDhighproof (hp) the
area method lemmas implemented in the GATP GCLC were analysed, and,
using the k-means clustering function implemented in the statistics package of
Octave, divided into three categories: low difficulty (hp < 284), medium difficulty
(284 ≤ hp < 1848) and high difficulty (hp ≥ 1848).

It is interesting to note how the explored coefficients highlight many salient
aspects of the proof, which could be used to analyse the readability of proofs.

Applying the Geometrography to the area method proofs contained in the
repository TGTP , using the GATP GCLC with the full level of detail, and
using the geometrographic coefficients Graziani and Quaresma argued in favour
of the following new readability coefficient [14] for geometric proofs:

Geometrographic Readability Coefficient of Proofs (GRCP)

GRCP = ((CSproof − CTproof)× (CDhighproof +CDtypeproof))

4 By elementary algebraic simplification, it is understood the basic algebraic opera-
tions: addition, subtraction, multiplication, division, and their properties of com-
mutativity, associativity, and distributivity. By elementary geometric simplification,
the direct application of the definition of the area method quantities is understood.
These steps are called trivial steps.
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This coefficient relates four quantities: the simplicity coefficient of the proof,
the total number of steps in the proof, the number of different steps with high-
difficulty in the proof, the number of different lemmas used in the proof.

The first factor approximates the simplicity coefficient of the non-trivial steps
in the proof. Given that in CTproof the construction is equal to 1 step, as well
as every application of a lemma, every AS step and every GS step (i.e., the
AS and GS steps weight is 1), if CTproof is subtracted from CSproof what will
be removed are surely all the trivial steps and also 1 from CSgcl and 1 for each
application of the lemmas (but the weight of those steps is much grater then 1).

The second factor accounts for the difficult steps. Steps that potentiality
make the proof much harder to follow, steps where the normal flow of the proof
would be interrupted to jump to the proof of the lemma, resuming after com-
pleting the lemma’s proof. Adding the number of high-difficulty steps with the
number of different lemmas used in the proof gave a multiplying factor for the
overall complexity of the proof. A final note about this second factor: a high-
difficulty step is, for sure, a lemma application, nevertheless, it is felt that the
high-difficulty nature of the lemma is a sufficient reason for this double counting.

Multiplying these factors, the approximation for the overall simplicity co-
efficient and the number of difficult steps—both elements that are believed to
characterise the readability of a proof—the readability coefficient of a proof is
obtained.

Therefore, considering 71 theorems and their area method proofs, from the
TGTP repository and using, again, the k-means clustering function from Oc-
tave, the proofs can be divided into the following classes of Geometrographic
readability:5

– readable (high− readability),GRCP ≤ 48000;
– medium-readability 48000 < GRCP ≤ 135000;
– low-readability, GRCP > 135000.

For example the GRCP for GEO0001, Ceva’s proofs is: GRCPGEO0001 =
(220− 32)× (0 + 3) = 564 ≤ 48000, so a readable (high-readability) proof.

4 An Analysis of Processors’ Computational Effort

The GCLC prover is a open source project.6 For that reason it was possible to
access the source code and modify it to include the “watch points”. The chrono
library, for dealing with time, was used (see Listing 1.2). At the beginning of the
proof cycle the CPU clock was kept in a variable start (see Listing 1.3) and at
each step of the proof the CPU clock was kept in a variable stop, the duration
is given by the difference stop-start and the process was re-initialised, taken
again the CPU time and kept it in the variable start (see Listing 1.4).

5 The actual values were rounded for better readability.
6 GCLC, GitHub repository, https://github.com/janicicpredrag/gclc

https://github.com/janicicpredrag/gclc
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#include <chrono>

Listing 1.2. chrono—C++ Library to deal with time

s t a r t = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now ( ) ;

Listing 1.3. chrono—C++ Library to deal with time

std : : cout << ” e l ” << elLema++ << ” ; ” << ” El . Point ” + i t−>arg [ 0 ] ;
stop = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now ( ) ;
durat ion = std : : chrono : : duration<double , s td : : micro> ( stop − s t a r t ) ;
std : : cout << ” ; ”<< durat ion . count ( ) << ”\n” ;
s t a r t = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now ( ) ;

Listing 1.4. chrono—C++ Library to deal with time

For simplicity the output was sent to the standard output, and, at running
time, redirected to a file (see Listing 1.5).

g c l c GEO0021 > GEO0021 CPU . txt

Listing 1.5. Calling GCLC and redirecting its output

The format of the output file is CSV (Comma Separated Values), for an easy
treatment and the construction of the line graph (see Listing 1.4).

5 Proof Simplicity vs Computer Effort

In this section the line charts presenting the coefficients of simplicity for the proof
and the computational effort required by the processors executing the theorem
proving are presented.

In the line charts that follow all the steps are counting, not like in the pre-
vious line chart (see Figure 2) where the algebraic steps were condensed to one
position only. In the study of the simplicity coefficients, the algebraic steps were
considered trivial, so its weight is always 1. This is something that must be re-
formulated as shown by the computation effort (CPU time) line, more about
this in the conclusions (see § 6).

All the examples were taken from the TGTP repository.

Ceva’s Theorem TGTP GEO0001, (see Theorem 1).

The line chart (or proof trace) is shown in figure 5.

Circumcentre of a Triangle TGTP GEO0021. A medium-readability proof.

Theorem 2 (Circumcentre of a Triangle). The circumcentre of a triangle
can be found as the intersection of the three perpendicular bisectors.

The proof by GCLC area method takes 599 steps and 0.091 seconds. By the
GRCP criteria it is a medium-readability proof.

See figure 6 for the proof trace (the fist 72 steps of it), with the lines for the
geometrography coefficients and CPU times.
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Fig. 5. Ceva’s Theorem, Geometrography Proof Trace
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Distance of a line containing the centroid to the vertices TGTP GEO0020. A
low-readability proof.

Theorem 3 (Distance of a line containing the centroid to the vertices).
Given a triangle ABC and a point X, the sum of the distances of the line XG,
where G is the centroid of ABC, to the two vertices of the triangle situated on
the same side of the line is equal to the distance of the line from the third vertex.

The proof by GCLC area method takes 4149 steps and take 15.972 seconds.
By the GRCP criteria it is a low-readability proof.

See figure 6 for the proof trace (the fist 72 steps of it), with the lines for the
geometrography coefficients and CPU times.

6 Conclusions and Future Work

There are two issues in the coefficients of simplicity proof trace that are quite
different form its computer effort counterparts.

The first issue relates to the use of the same lemma several times. It was
assumed that the first time a lemma from the area method is applied in a proof,
the effort to prove that lemma must be taken into consideration, to all the other
times only the effort to check if this step is a correct instance of that lemma is
needed. It is considered that, from the second application of a lemma onward,
its proof is accepted, so, only its adaptation to the new configuration is needed,
i.e., the pattern matching of the lemma configuration to a new setting. For that
reason, in any second, third, etc. application of a lemma, only the GS coefficient
values are considered. This led to a high spike for the first instance and a relative
low spike for the next applications of the lemma.

This is not the case for the computational effort. All the lemmas of the area
method are part of the program, so apart from the effort of finding the correct
pattern (an effort that can be compared to the human effort), every application
of the lemmas has the same computational effort, there is no attempt to prove
it, before applying it. It can be said that the prover would be the counterpart of
an expert in the area method, someone that already have proved all the lemmas
and use them, without any extra efforts in its application. On the other hand
in Graziani and Quaresma initial view, exposed in [14], a mathematician, not
necessary knowledgable of the area method, is considered.

The second issue relates to the treatment of algebraic steps. In previous work,
algebraic steps were considered trivial in terms of effort. However, based on the
computational effort line, it has become clear that this assumption is inaccurate.
There is a need for a more detailed analysis of the algebraic steps, similar to what
was done for geometric steps, to develop appropriate simplicity coefficients. This
insight underscores the importance of reevaluating algebraic operations to reflect
their contribution to the overall effort better.

This study reveals key differences in how humans and machines handle proof
readability. Humans can reuse previously proven lemmas with reduced effort
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in subsequent applications, while machines treat each lemma application inde-
pendently, requiring the same computational resources each time. Additionally,
humans tend to treat algebraic steps as trivial, whereas machines apply consis-
tent computational effort regardless of the simplicity perceived by humans.

These findings suggest important directions for the future design of automatic
proof systems. By recognizing patterns in lemma reuse and adapting proofs to
match human readability, developers can create systems that generate more
user-friendly proofs. From a computational perspective, minimizing redundant
calculations and optimizing the reuse of previously computed steps can signifi-
cantly reduce the machine’s workload.

For example, Figure 7 shows as the proof trace of Ceva’s Theorem using Ge-
ometrography (see Figure 5) can be manually edited to reflect a human expert’s
perspective. Specifically, all algebraic steps have been assigned the same minimal
CPU value. It is evident that the traces are very similar, with the primary differ-
ence being the initial value: for human readability, Graziani and Quaresma [14]
assigned the simplicity coefficient based on the geometric construction, whereas
the CPU time for this initial step remains to be determined.
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Fig. 7. Ceva’s Theorem, Geometrography Proof Trace — edited

Looking forward, this study provides a foundation for research into hybrid-
proof systems that balance human comprehension with machine efficiency. Fu-
ture work could focus on exploring these concepts using different provers and/or
methods different from GCLC/area methods, as well as developing algorithms
that dynamically adjust the structure of proofs to accommodate both human-
readable formats and machine-efficient processing. This dual approach has the
potential to improve tools for teaching and learning mathematics, as well as
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enhance the efficiency of automated proof verification in advanced research con-
texts. Such advancements could make formal proofs more accessible, both by
reducing the cognitive load on human users and optimizing the computational
resources required for their verification.
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17. Rüdger Thiele. Hilbert's twenty-fourth problem. The American Mathematical
Monthly, 110(1):1, jan 2003.

18. Freek Wiedijk. The de Bruijn factor. Poster at International Conference on Theo-
rem Proving in Higher Order Logics (TPHOL2000), 2000. Portland, Oregon, USA,
14-18 August 2000.


	A Readability Criterion for Humans and Machines

