
Cognitive Aspects in the Formal Modelling of
Multi-party Human-computer Interaction?

Antonio Cerone[0000−0003−2691−5279] and Olzhas Zhalgendinov

Department of Computer Science, School of Engineering and Digital Sciences,
Nazarbayev University, Astana, Kazakhstan

antonio.cerone@nu.edu.kz olzhas.zhalgendinov@nu.edu.kz

Abstract. The unpredictability of human behaviour makes formal anal-
ysis of human-computer interaction (HCI) already difficult when one
single user is interacting with one computer system. However, nowa-
days interaction normally involves several users, i.e., human components,
interacting simultaneously with separate interfaces which communicate
with and/or act upon the same computer resources. Independently of
whether human components aim at using computer resources to commu-
nicate with each other or to concurrently act upon and modify stored
information, interfaces should be designed in order to protect users from
the potential negative effects caused by the behaviour of other users.
In this research paper, we define a framework that combines the formal
modelling of cognitive aspects of human components and the modelling of
the actual computer system into an overall model that can be formally
analysed using model-checking. We use the Behaviour and Reasoning
Description Language (BRDL) to model human cognition and implement
our framework using Real-time Maude, whose model-checker is then used
to carry out formal verification.

Keywords: Human-computer Interaction ·Human Cognition · Behaviour
and Reasoning Description Language · LTSs · Formal Analysis.

1 Introduction

Although attempts to conceptualise human-computer interaction (HCI) and
multi-party interaction date back to the late 1980s and early 1990s [6, 10, 15,
16], most of HCI research still focuses nowadays on interactions between a single
user and a single system [7] and we are still far from a unified theory of HCI.
This in spite of the fact that current interactive systems involve a large variety of
interaction modalities for dialog integration, from web forms to spoken dialogs
up to sophisticated multimodal systems, to support access to shared data and
their manipulation and modification, to carry out computer-supported collabo-
rative work (CSCW), to share own resources and even to just interact socially.
Thus multiple users interact with the same system and, through a single system
? Work partly supported by CIDMA (Research Center of Mathematics and Applica-
tions) and the University of Aveiro through the SEFM local organization.

2 A. Cerone and O. Zhalgendinov

or a number of interconnected systems, with each other. The resultant forms of
interaction involve simultaneous actions and reactions, which have to be consis-
tent and should not negatively affect each other [17]. This makes it difficult to
conceptualise multi-party HCI and even more difficult to tackle it using formal
approaches. As a result, also formal approaches to HCI tend to consider a sin-
gle user and a single system [18] and neglect the verification of those properties
that emerge from the possibly implicit user-to-user interaction mediated by an
interconnected computer system.

In this paper, we propose an approach to the formal modelling of interac-
tive systems in which multiple users interact with an interconnected system of
servers and clients. We model computer systems using an extension of labelled
transition systems (LTS) that supports communication via asynchronous mes-
saging between system components and interaction with users. We model human
tasks using the Behaviour and Reasoning Description Language (BRDL) [4, 5],
which characterises human memory and memory processes and the way they
determine human behaviour in terms of cognitive rules that are enabled by the
user’s goal, mental state and perception. Rule execution determines actions on
the system and evolution of the user’s mental state. The labels of LTS transitions
play the double role of receiving a message from another system component and
reacting to a user’s action. A further extension of both LTSs and BRDL is the
use of time in the form of a timing interval that determines the minimum and
maximum delay for the rule execution.

The rest of the paper is organised as follows. Sect. 2 introduces the LTS
extension and Sect. 2.1 illustrates it on a course registration system example.
Sect. 3 introduces the BRDL notation and Sect. 3.1 illustrates it on the example.
Sect. 4 describes the communication between the extended LTSs and the inter-
action between systems and human components, while Sect. 4.1 illustrates them
on the example. Sect. 4.2 shows the use of model-checking to formally verify two
properties of the course registration system example. Sect. 5 concludes the paper
and discusses possible future work.

2 Computer System Model

In order to model interconnected computer systems with asynchronous commu-
nication between each other and time constraints, we extend labelled transition
systems by introducing messages that can be received and consumed through the
transition labels. Message content production is modelled by adding it together
with the recipient identifier to a component of the current state that we assume
to instantaneously deliver the pair recipient-content to the network while keep-
ing track of the set of sent messages and their recipients. Moreover, in order to
support interaction with users, the system state is partitioned into an invisible
part, which is used internally, and a visible part, which is used as output in
the interaction, while transition labels can also assume the role of input in the
interaction.

Cognitive Aspects in the Formal Modelling of Multi-party HCI 3

This approach allow us to uniformly model interaction, whether between two
system components or between a human component and a system components.
In fact, the transition label models the system component’s reception of either
another system component’s message or a human action.

Definition 1 (CLTS). A Communicating Labelled Transition Systems (CLTS)
is an tuple Sn = 〈I, n, Vn, In,T, An,Mn, Tn,Vn, In〉 where

– I is an identifier domain;
– n ∈ I is the CLTS identifier;
– Vn is a set of visible atomic states;
– In is a set of invisible atomic states;
– T is a time domain;
– An is a set of actions;
– Mn is a set of messages;
– Tn ⊆ 2Vn × 2In × (An ∪Mn)× T2 × 2Vn × 2In × 2S, with

S = {sent(i,m) | i ∈ I\{n} ∧m ∈Mn}

being a set of sent messages together with their recipients, is a set of transi-
tion rules whose elements are represented with the following syntax

visible1 [invisible1]
lab−→
[a,b]

visible2 [invisible2] msgSent

where a, b,∈ T, sets visible1, visible2 ∈ 2Vn and invisible1, invisible2 ∈
2In are denoted by elements separated by commas, lab ∈ An ∪ Mn, and
msgSent ∈ 2S;

– Vn ⊆ Vn is the current set of visible atomic states;
– In ⊆ In is the current set of invisible atomic states;

such that An ∩Mn = ∅ and Vn, In, An are pairwise disjoint.

Note that messages can also be elements of Vn or In.
A CLTS evolves starting from the initial state consisting of a set of initial

visible atomic states and a set of initial invisible atomic states and, as explained
in Sect. 4. also depending on the set of sent messages and respective recipients
available in the environment.

The execution of the transition rule is triggered by the label lab and the
inclusion of visible1 in the set of initial visible atomic states and invisible1 in
the set of initial invisible atomic states. The label lab may be either a message
received from another CLTS or an action performed by a user.

A delay between a minimum a and a maximum b must occur before the
transition is executed. When a = b, the time interval [a, a] is shortened as a.

2.1 Example: A Course Registration System

We model a course registration system consisting of a central server that stores
the information about user registrations and instances of client websites run-
ning locally for various students. Students interact with the system through the

4 A. Cerone and O. Zhalgendinov

interface provided by the website. We model our system using separate CLTS,
S0 for the central server and Si, with i ∈ N\{0}, for the i-th website instance.
For sake of simplicity, we only consider two students using two separate client
websites, modelled by S1 and S2, and just one course with a cap of one student,
that is, only one student can register for the course. In this way, when one of the
two students successfully registers for the course, the system should prevent the
other student from registering for that same course. For each of our CLTSs we
use a distinct natural number n ∈ N as an identifier and a time domain T = N,
with a time unit of 1 millisecond (ms).

Central Server When students intend to register for a course, they first check
the availability of the course. The server waits for such a request in the form of a
message and returns a new message depending on the availability of the course.
Then the server waits for a student’s message that requests to register for the
course. When the registration message is received, the server makes the course
unavailable, so that other students cannot register.

The initial configuration S0 = 〈N, 0, V0, I0,N, A0,M0, T0,V0, I0〉 of the server
CLTS is defined as follows:

– V0 = ∅,
– I0 = {available, unavailable, registeredi, labRegisteredi},
– A0 = ∅,
– M0 = {checki, registeri, checkLabsi, labChoseni, labInfoi, labFailedi} ∪ I0,
– V0 = ∅;
– I0 = {available};
– T0 consists of the following transition rules:

[available]
checki−→

[10,1000]
[available] sent(i, available) (1)

[unavailable]
checki−→

[10,1000]
[unavailable] sent(i, unavailable) (2)

[available]
registeri−→
[10,1000]

[unavailable, registeredi] (3)

[unavailable]
registeri−→
[10,1000]

[unavailable] (4)

[]
checkLabsi−→
[10,1000]

[] sent(i, labInfo) (5)

[]
checkLabsi−→
[10,1000]

[] sent(i, labFailed) (6)

[]
labChoseni−→
[10,1000]

[labRegisteredi] (7)

Each of these transitions may take between 10 and 1000 ms, as modelled by
the [10, 1000] time interval. This delay reflects both the server processing time
and the network transmission time. Moreover, S0 does not have visible states,
since user’s visibility only occurs at the level of the client websites. Instead, all

Cognitive Aspects in the Formal Modelling of Multi-party HCI 5

transitions are labelled with messages received from the clients. In fact, the user
cannot interact directly with the server and, as a result, the set of actions of the
CLTS that models the server is empty.

Transition rules 1 and 2 model the response of the server to the student’s
check on course availability, which was sent through the website whose identifier
is i. The received checki message triggers transition rule 1 or 2, depending on
whether the invisible state of S0 contains available or unavailable, respectively.
When executed, the transition rules send the course availability invisible atomic
state to the website i that has sent the check request.

Transition rules 3 and 4 model the response of the server to the student’s
request for course registration. The received register message triggers transition
rule 3 or 4, depending on whether the invisible state of S0 contains available
or unavailable, respectively. When executed, transition rules 3 replaces the
available invisible atomic state with unavailable and adds the invisible atomic
state registeredi, whereas transition rules 4 consume the messages without mod-
ifying the state.

Transition rules 5 and 6 model the response of the server to the student’s
request for lab information by sending either the information or a failure message
to the website i that has sent the check request.

Transition rule 7 models the response of the server to the student’s choice to
enrol in the lab by adding labRegisteredi to the invisible state.

Note that only transition rules 1 and 3 may be enabled in the initial con-
figuration (I0 = {available}) provided that the appropriate message is received
(checki and registeri, respectively).

Client Website The client website waits for the page to be refreshed in order
to get relevant course information. When the student clicks on the refresh button,
the client sends a request to the server for checking the course availability. Then
the client waits for the response and visualises the course availability according
to the server response. If the course is available, the student can click the en-
rol button to send the registration message to the server and feedback on the
successful enrolment is visualised. At this point, the student needs to click the
proceed button and wait for the next page to load. This may take some time and
it can fail due to external reasons such as too much internet traffic or tempo-
rary unavailability of the server. In case of failure, the student needs to click the
proceed button again. Finally, the student must choose whether to also register
for a lab. Clicking the register lab button allows the student to register for a lab
whereas clicking the proceed button once again allows the student to skips this
step. This choice ends the registration process.

The initial configuration Si = 〈N, i, Vi, Ii,N, Ai,Mi, Ti,Vi, Ii〉, with i ∈ N\{0},
of the i-th client website CLTS is defined as follows where

– Vi = {emptyPage, waiting, available, unavailable, enrolled, chooseLab,
noLab, labRegistered},

– Ii = {labs, loadingLabs},
– Ai = {refresh, enrol, proceed, registerLab},

6 A. Cerone and O. Zhalgendinov

– Mi = {checki, available, unavailable, registeri, checkLabsi, labInfoi,
labFailedi, labChoseni},

– Vi = {emptyPage};
– Ii = ∅;
– Ti consists of the following transition rules:

emptyPage []
refresh−→

0
waiting [] sent(0, checki) (8)

waiting []
available−→

0
available [] (9)

waiting []
unavailable−→

0
unavailable [] (10)

available []
enrol−→

0
enrolled [labs] sent(0, registeri) (11)

enrolled [labs]
proceed−→

0
enrolled [loadingLabs] sent(0, checkLabsi) (12)

enrolled [loadingLabs]
labInfoi−→

0
chooseLab [] (13)

enrolled [loadingLabs]
labFailedi−→

0
enrolled [labs] (14)

chooseLab []
proceed−→

0
noLab [] (15)

chooseLab []
registerLab−→

0
labRegistered [] sent(0, labChoseni) (16)

All these transitions are instantaneous, as modelled by the [0, 0] time interval
represented by the shortening 0 in the notation. In fact, the delay experienced
by the user is actually the delay in the response from the server, which we have
considered in the model S0 of the server.

Transition rule 8 models the website waiting for the refresh user’s action.
Then the visible state is instantaneously changed by removing the emptyPage
atomic state and adding the waiting atomic state, which provides feedback to
the user that the client website is waiting for an answer from the server. In
fact, message checki is sent to the S0 server to request information about course
availability.

Transition rules 9 and 10 model the arrival of the response from the server
as the message that labels the transition (available or unavailable) and instan-
taneously change the visible state by removing the waiting atomic state and
adding the received message.

Transition rule 11 models the enrol user’s action, which is enabled when
the visible state contains available. It instantaneously removes such a visible
atomic state, adds the enrolled visible atomic state, as a feedback to the user,
and sends a registration message to the S0 server. Moreover, it adds the labs
invisible atomic state to enable transition rule 12, which starts the optional lab
registration process.

Transition rule 12 models the proceed user’s action enabled after the course
registration has succeeded. A message checkLabsi is sent to the S0 server to

Cognitive Aspects in the Formal Modelling of Multi-party HCI 7

request information about labs and the labs invisible atomic state is instanta-
neously replaced by loadingLabs, to enable the reception of the response from
the server.

Transition rules 13 and 14 model the successful reception of a response from
the server and a failure in receiving the response, respectively. If the information
is received successfully (label labInfoi in rule 13) the enrolled visible atomic state
and the loadingLabs invisible atomic state are instantaneously replaced by the
chooseLab visible atomic state to enable the lab choice. If there is a failure
due to external reasons (label labFailedi in rule 14) the loadingLabs invisible
atomic state is instantaneously replaced by the chooseLab invisible atomic state
to enable a new request through rule 12.

Transition rule 15 models the proceed user’s action that is enabled when the
visible state is chooseLab. The effect of the action is to skip the lab choice and
instantaneously replace the chooseLab visible atomic by noLab.

Transition rule 16 models the registerLab user’s action, which is enabled
when the visible state is chooseLab. The effect of the action is to register for
a lab by instantaneously sending the labChoseni message to the S0 server and
replacing the chooseLab visible atomic state by labRegistered.

Note that only transition rule 8 may be enabled in the initial configuration
(Vi = {refresh}) provided that the appropriate action (refresh) is performed by
the user.

3 User Cognitive Model

The user’s behaviour is modelled in terms of the way cognition affects the ac-
tions performed in response to visible states (interface) of the computer system.
In this section, we recall the Behaviour and Reasoning Description Language
(BRDL) [4, 5], a notation for modelling user’s knowledge. BRDL is based on the
information processing theory, which was developed in cognitive psychology in
the 1950s, and describes human thinking as a computational process with at
least two levels of information storage: long-term memory (LTM) that stores
knowledge and short-term memory (STM) that temporarily stores information
used for processing [1]. This approach has originated a number of conceptual
models of human memory in cognitive psychology, from the basic distinction
between LTM and STM [1], to the most complex versions of the Multistore
Working Memory Model [2].

The semantics of BRDL is based on the basic model of human memory [1].
In this paper, we are interested in the user’s knowledge of the interface. This is
modelled in BRDL in terms of cognitive rules that are stored in LTM and drive
the user’s response to visible states of the interface, which we call perceptions
from the user’s perspective. That is, the user perceives the visible state of the
interface and responds to it by performing an action, either automatically or
according to the current mental states and a goal. BRDL provides a standard
structure of cognitive rules, with full flexibility concerning the complexity of its
components, which may vary from just mnemonic identifiers or phrases in natural

8 A. Cerone and O. Zhalgendinov

language to complex data structures. This allows us, on the one hand, to keep
the syntax of the language to a minimum, thus making it easy to learn and
understand for practitioners, and, on the other hand, to use semantic variations
that correspond to alternative theories of memory and cognition and to combine
BRDL models of the user with any formal notation that models the computer
components.

User’s current mental states and goals are stored in STM. Mental states
reflect thinking or, more specifically, reasoning and decision making. A goal is
determined by what is intended to be achieved in terms of mental state or action
performed. We represent a mental state as a set of pieces of information that
may contain perceptions. A number of processing activities are carried out on the
information stored in STM. Thus STM together with such processing activities
makes up what is called human working memory (WM) [2]. Typical processing
activities of WM are: attention, which stores perceptions in STM, retrieval, which
copies information from LTM to STM, and inference, which applies rules stored
in LTM to transform information in STM.

Definition 2 (Goal). Let A be a set of actions, P a set of perceptions and H
a set of pieces of information, with P ⊆ H and A and H disjoint. The notation
goal(G), with G ∈ 2A∪H , denotes the goal that is achieved when

– either one of the actions in G ∩A is performed;
– or one of the pieces of information in G ∩H is in STM;

We call G set of achievements.
The set of goals on A and H is denoted by GA,H .

Definition 3 (STM Models). Let T be a time domain, A a set of actions, P
a set of perceptions and H a set of pieces of information, with P ⊆ H and A
and H disjoint. An STM model of capacity n ∈ N and decay time d ∈ T on T,
A and H, is a set H ⊆ (A∪H ∪GA,H)×T of cardinality lower than or equal to
n and such that for each p ∈ A ∪H ∪ GA,H and t1, t2 ∈ T, if (p, t1), (p, t2) ∈ H,
then t1 = t2.

The set of STM models of capacity n ∈ N and decay time d ∈ T on T, A and
H is denoted by STMn,d

T,A,P,H .

The decay time d denotes how long the information persists in STM. The time
associated with the piece of information is called lifetime. The lifetime equals d
when the piece of information is stored in STM, then decrease with the passing
of time, and the piece of information disappears from STM when its lifetime
becomes 0. The capacity of STM that is widely accepted in psychology is 7± 2
pieces of information, as determined by Miller’s experiments in 1956 [9]. Such
capacity limits are based on the numbers of chunks of information that can be
held in STM and are also supported by modern experimental cognitive psychol-
ogy [11] In our models, in order to be safe, we normally set STM capacity to
5.

As an example, we may consider STM5,2700
N,A,P,H , where

Cognitive Aspects in the Formal Modelling of Multi-party HCI 9

– A = {refresh, enrol, proceed, registerLab};
– P = {emptyPage, available, enrolled, chooseLab, labRegistered};
– H = P .

The elements of A are the actions of the client websites Si, with i ∈ N\{0}, intro-
duced in Sect. 2.1, which are actually instances of the same website. The elements
of P are visible states of those Si, that is, perceptions from the user’s viewpoint.
The enrolled piece of information models the user’s feeling of having enrolled in
the course. We may consider two goals goal(enrolled), goal(registerLab) ∈ GA,H .
The user feels to have achieved goal goal(enrolled) when the feedback provided
by the system determines an enrolled mental state (enrolled ∈ P = H) and to
have achieved goal goal(registerLab) when performing the action of registering
for the lab (registerLab ∈ A).

Definition 4 (LTM Model). An LTM model is a tuple L = 〈H,P,T, A,C〉
where

– H is a set of pieces of information;
– P ⊆ H is a set of perceptions;
– T is a time domain;
– A is a set of actions;
– C ⊆ GA,H × 2H × 2P × T2 ×A× 2(H∪GA,H) is a set of cognitive rules whose

elements are represented with the following syntax

goal : info1 ↑ perc =⇒
[a,b]

act ↓ info2

where a, b,∈ T , goal ∈ GA,H , info1 ∈ 2H , perc ∈ P , act ∈ A and info2 ∈
2H∪GA,H ,

with H and A disjoint.

In cognitive rules, the ↑ symbol suggests removal from STM whereas the ↓ symbol
suggests storage in STM. We call enabling the part of the rule on the left of =⇒
and performing the part of the rule on the right of =⇒. The execution of a
cognitive rule is enabled by the presence of goal goal and information info1
in STM, and by the perception perc from the environment, and results in the
removal of info1 from STM, the performance of action act on the environment
and the storage of new information info2 in STM. Note that info1 only contains
pieces of information whereas info2 may also contain goals. In fact, when the goal
goal has a nonempty set of achievement, it is the only goal enabling the rule,
while goals that may be in info2 are actually produced in STM by performing
the rule. A goal without achievements (empty set of achievements) denotes the
absence of actual goal. In this case the syntax of a cognitive rule is shortened as

info1 ↑ perc =⇒
[a,b]

act ↓ info2

Definition 5 (UCM). Let T be a time domain, A a set of actions, P a set of
perceptions and H a set of pieces of information, with P ⊆ H and A and H
disjoint. A User Cognitive Model (UCM) with STM capacity n ∈ N and STM
decay time d ∈ T on T, A and H is a tuple U = 〈J, n,Ln,Hn〉 such that

10 A. Cerone and O. Zhalgendinov

– J is an identifier domain;
– n ∈ J is the UCM identifier;
– L = 〈H,P,T, A,C〉 is an LTM model;
– H ∈ STMn,d

T,A,P,H is the initial STM model.

3.1 Example: A Registration Task

In the context of the course registration system, the user has a goal to register
for the course and may also have an additional goal to register for a lab. In
Sect. 3, we modelled these goals as goal(enrolled), goal(registerLab) ∈ GA,H ,
respectively.

The registration task of a student who intends to also register for a lab is
modelled in BRDL as the UCM

UwithLab = 〈N, withLab, 〈H,P,N, A,C〉,HwithLab〉

where

– P = {emptyPage, available, enrolled, chooseLab, labRegistered},
– H = P ,
– A = {refresh, enrol, proceed, registerLab},
– C consists of the following cognitive rules:

↑ emptyPage =⇒
[100,300]

refresh ↓ (17)

goal(enrolled) : ↑ available =⇒
[100,300]

enrol ↓ (18)

goal(enrolled) : ↑ enrolled =⇒
[100,300]

↓ enrolled (19)

goal(enrolled) : enrolled ↑ =⇒
[100,300]

proceed ↓ enrolled (20)

goal(noLab) : ↑ chooseLab =⇒
[100,300]

proceed ↓ (21)

goal(noLab) : ↑noLab =⇒
[100,300]

↓noLab (22)

goal(registerLab) : ↑ chooseLab =⇒
[100,300]

registerLab ↓ (23)

and the initial STM model is

HwithLab = {(goal(enrolled), 2700), (goal(registerLab, 2700))}

In terms of timing we assume that the access to LTM requires between 100 ms
and 300 ms and that the decay time of the information in STM is 2700 ms.
This timing is suggested by the most recent experimental evidence in cognitive
psychology [3].

Cognitive rule 17 does not have a goal part. It models that the user automat-
ically reacts to the perception of an empty page (emptyPage ∈ P) by refreshing
(refresh ∈ A).

Cognitive Aspects in the Formal Modelling of Multi-party HCI 11

Cognitive rules 18–20 are driven by the goal(enrolled) goal. Rule 18 models
the action of enrolling in the course (enrol ∈ A) triggered by the perception of
course availability (available ∈ P). Rule 19 models the attention to the feedback
of the system that shows successful enrolment (enrolled ∈ P): the perception
is transferred to STM (enrolled ∈ H). Rule 20 models clicking the proceed
button (proceed ∈ A) once becoming aware that the enrolment was successful
(enrolled ∈ H) and preserves the content of STM (enrolled appears as informa-
tion removed from STM in the enabling part of the rule as well as information
stored in STM in the performing part of the rule).

Cognitive rules 21 and 22 are driven by the goal(noLab) goal. Rule 21 mod-
els the action of skipping the lab registration by clicking the proceed button
(proceed ∈ A) again and is triggered by the perception of the alternative choice
(which is not taken) of choosing lab registration (chooseLab ∈ P). Rule 22 mod-
els the attention to the feedback of the system that shows that registration to
lab has been successfully skipped (noLab ∈ P): the perception is transferred to
STM (noLab ∈ H). Note that HwithLab cannot evolve to an STM model that
enables these two cognitive rules, since goal(noLab) is not in HwithLab and is
not generated by any cognitive rule in C.

Cognitive rule 23 is driven by the goal(registerLab) goal. It models clicking
the register lab button (chooseLab ∈ A) once becoming aware that the course
enrolment was successful (enrolled ∈ H).

A student

UwithoutLab = 〈N, withoutLab, 〈H,P,N, A,C〉,HwithoutLab〉

who does not intend to choose a course has instead an initial STM model

HwithoutLab = {(goal(enrolled), 2700, (goal(noLab, 2700))}

which cannot evolve to an STM model that enables cognitive rule 23. Instead,
HwithoutLab can evolve to an STM model that enables cognitive rules 21 and 22.

4 Overall System Model and Dynamics

An overall system model consists of computer components modelled as CLTSs
and human components modelled as UCMs. Each UCM has to interact with one
and only one CLTS, which models a system interface. Therefore, interaction can
be modelled as an injective function between UCMs and CLTSs. To facilitate
modelling we index CLTSs and UCMs on their identifiers as we did for the
CLTSs of the course registration system example introduced in Sect. 2.1. Then
we can define an injective function between the sets of identifiers to characterise
the interaction.

Definition 6 (OSM). Given two sets of identifiers I and J and a time domain
T, let

– {Si}i∈I be a family of CLTSs on time domain T,

12 A. Cerone and O. Zhalgendinov

– {Uj}j∈J be a family of UCMs on time domain T,
– ϕ : J −→ I be an injective function, which we call interaction function,
– µ be a set of sent messages together with their recipients

ThenM = 〈{Si}i∈I, {Uj}j∈J, ϕ, µ〉 is an Overall System Model (OSM) on time
domain T.

Definition 7 (Interaction). Let M = 〈{Si}i∈I, {Uj}j∈J, ϕ, µ〉 be an Overall
System Model (OSM) on time domain T with

– Si = 〈I, i, Vi, Ii,T, Ai,Mi, Ti,Vi, Ii〉, for each i ∈ I
– Uj = 〈J, j, 〈Hj , Pj ,T, Aj , Cj〉,Hj〉, for each j ∈ J

If, there exists j ∈ J such that

(goal(info) : info1 ↑ perc =⇒
[a,b]

act ↓ info2) ∈ Cj

and

(visible1 [invisible1]
act−→
[c,d]

visible2 [invisible2] msgSent) ∈ Tϕ(j)

satisfy the following conditions

C.1 (goal(info), t0), (h1, t1), . . . (hn, tn) ∈ Hj

for all hi ∈ info1, i = 1, . . . , n, and for some t0, t1, . . . tn ∈ T;
C.2 perc ∈ visible1
C.3 visible1 ⊆ Vϕ(j);
C.4 invisible1 ⊆ Iϕ(j);

then the cognitive rule and the transition rule may synchronise on action act
and, if the synchronisation occurs,M evolves toM′ where

E.1 Vϕ(j) is replaced with V ′ϕ(j) = Vϕ(j)\visible1 ∪ visible2.
E.2 Iϕ(j) is replaced with I ′ϕ(j) = Iϕ(j)\invisible1 ∪ invisible2.
E.3 Let be H′j = Hj\{(hi, ti) |hi ∈ info1} ∪ {(h,∆) |h ∈ info}, with ∆ denoting

the STM decay time, Hj is replaced with
E.3.1 H′j, if act /∈ info and there is no (hi, ti) ∈ Hj such that hi ∈ info.
E.3.2 H̄j = H′j\{(goal(info), t0)}, otherwise.

E.4 µ is replaced with µ′ = µ ∪msgSent.

Synchronisation may occur if the cognitive rule and the transition rule share the
same action act, which is performed by the user on the interface, goal(info) and
all pieces of information hi in info1 are in STM, associated with their current
lifetime ti (condition C.1), the perception perc of the cognitive rule is in the
visible source state visible1 of the transition rule (condition C.2), the visible
source state visible1 of the transition rule is included in the visible component
Vϕ(j) of the current state of the CLTS (condition C.3) and the invisible source
state invisible1 of the transition rule is included in the invisible component Iϕ(j)

of the current state of the CLTS (condition C.4).

Cognitive Aspects in the Formal Modelling of Multi-party HCI 13

When the synchronisation occurs, the current state of the CLTS, the current
content of the STM and the current set of sent messages and respective re-
cipients evolves. The visible part visible2 (evolution E.1) and the invisible part
invisible2 (evolution E.2) of the target state replace the visible part visible1 and
the invisible part invisible1 of the source state in the Vϕ(j) visible component
and Iϕ(j) invisible component, respectively, of the current state of the CLTS.
The current content Hj of STM evolves by removing the timed version of info1
information in the enabling part of the cognitive rule and by adding the timed
version of info2 information in the performing part of the cognitive rule (evolu-
tion E.3.1) and, if the shared action is in the goal achievements (act ∈ info) or
one of the pieces of information in the info goal achievements has a timed ver-
sion in STM, by also removing the timed version of goal goal(info) from STM,
because it has been achieved and is no longer needed (evolution E.3.1). The
current set of messages µ evolves by adding the messages msgSent generated
by the transition rule (evolution E.4). When more synchronisations are possible
the choice is nondeterministic.

Definition 8 (Message reception). Let M = 〈{Si}i∈I, {Uj}j∈J, ϕ, µ〉 be an
Overall System Model (OSM) on time domain T and

Se = 〈I, e, Ve, Ie,T, Ae,Me, Te,Ve, Ie〉

with e ∈ I, be an CLTS model inM. If

(visible1 [invisible1]
rec−→
[c,d]

visible2 [invisible2] msgSent) ∈ Te)

satisfies the following conditions

C.3 visible1 ⊆ Ve;
C.4 invisible1 ⊆ Ie;
C.R sent(e, rec) ∈ µ;

then the transition rule is enabled and, if it is executed,M evolves toM′ where

E.1 Vϕ(j) is replaced with V ′ϕ(j) = Vϕ(j)\visible1 ∪ visible2.
E.2 Iϕ(j) is replaced with I ′ϕ(j) = Iϕ(j)\invisible1 ∪ invisible2.
E.R µ is replaced with µ′ = µ\{sent(e, rec)}.

4.1 Example: User’s Interaction with its Registration Website

The overall registration systems initial configuration is modelled by the OSM

M = 〈{S0,S1,S2}, {U1,U2}, ϕ, ∅〉

where S0, S1 and S2 are defined as in Sect 2.1, U1 = U2 as UwithLab introduced
in Sect. 3.1 and ϕ : {1, 2} −→ {0, 1, 2} is defined by ϕ(1) = 1 and ϕ(2) = 2.

As an example of interaction, both user U1 and user U2 are initially enabled to
interact with the corresponding interface, S1 or S2, respectively, as characterised

14 A. Cerone and O. Zhalgendinov

by the interaction function ϕ. Thus we can say generically that Ui performs cogni-
tive rule 17 and interacts with Si, which concurrently performs transition rule 8.
Cognitive rule 17 has neither a goal nor an enabling information to be removed
from STM, thus the initial visible state Vi = {emptyPage} of S1 provides the
emptyPage perception that is sufficient to enable it. The performance of rule 17
determines the synchronisation on action refresh with transition rule 8, which is
also enabled by the emptyPage visible atomic state. As a result of the synchro-
nisation, there is no evolution of the user STM Hi, since the performing part
of the cognitive rule has no information to store in STM. Instead, the waiting
visible atomic state replaces emptyPage in Vi, resulting in V ′i = {waiting}, and
message sent(0, checki) is produced, changing µ = ∅ to µ′ = {sent(0, checki)}.
This interaction requires a time between 100 and 300 ms, since [100, 300] is the
time interval associated with rule 17 while rule 8 is instantaneous.

As an example of message reception, transition rule 1 is enabled on the invis-
ible state I0 = {available} of S0 and on the evolved set µ′ = {sent(0, checki)} of
sent messages and respective recipients. The performance of the rule results in no
change of the invisible state but in the consumption of message sent(0, checki)
and the production of message sent(i, available), that is, in the evolution of µ′
to µ′′ = {sent(i, available)}. This message reception requires a time between
10 and 1000 ms, since [10, 1000] is the time interval associated with rule 1 that
models the network delay.

4.2 Formal Analysis

Our approach is implemented using the Maude rewrite system [8, 13] and its real-
time extension Real-Time Maude [14, 12]. Real-Time Maude model checker fea-
tures a timed search command that traverses the reachable states using breadth
first search and checks for each state whether it satisfies the search pattern and
condition. We use the search command to formally verify two properties:

1. Only one student believes to have registered for the one place course;
2. A student cannot unintentionally skip the lab registration.

A reasonable time bound for the timed search command is [0, 10000]. It takes
at most 1800 ms for the UCMwithLab task to be completed by performing six of
seven cognitive rules. In absence of network failures, it takes at most 5000 ms
for the task to be served by the S0 central server by performing five of seven
transition rules.

According to cognitive rule 19 the STM model stores the enrolled piece of
information when the student achieves the goal of registering for the course.
Therefore, for property 1 we can use

search pattern: 〈S, {〈N, 1,L1,H′〉, 〈N, 2,L2,H′′〉}, ϕ,M〉
seach condition: (enrolled, T ′) ∈ H′ ∧ (enrolled, T ′′) ∈ H′′

where S is a placeholder for any set of CLTS, M is a placeholder for any set
of snt messages, T ′, T ′′ ∈ N are placeholders for a time value, and H′,H′′ are

Cognitive Aspects in the Formal Modelling of Multi-party HCI 15

placeholders for any STM. The search pattern looks for an OSM that contains
two UCM models. The search condition specifies that both UCM models must
contain the enrolled STM item. The search provides as a result an OSM evo-
lution that satisfies the search condition thus showing that property 1 is not
satisfied. The OSM evolution shows that the error occurs because in transition
rule 4 the server does not provide the website client with the information about
the registration failure. The erroneous belief could be prevented if transition
rule 4 sends a failure message to the client website and this, upon reception,
changes the visible state to provide the user with appropriate feedback.

In order to analyse property 2, we need to check whether the user may click
the proceed button in rule 15 with intention of clicking it in rule 12. Therefore,
for property 2 we can use

search pattern: 〈{〈I, N, VN , IN ,N, AN ,MN , TN ,VN , IN 〉} ∪ S,U, ϕ,M〉
seach condition: noLab ∈ VN

where N ∈ {1, 2} is a placeholder for the CLTS identifier, S is a placeholder for
any set of CLTSs, U is a placeholder for any set of UCMs, andM is a placeholder
for any set of sent messages and respective recipients. The search should result
in an OSM with one website containing the noLab information

In a correct system behavior, this search would result in an OSM with one
website containing the noLab visible atomic state only if the user’s STM con-
tains goal(noLab) in the initial configuration. Instead, this also occurs when the
user’s STM contains goal(registerLab) in the initial configuration, that is, also
when the user intends to register for a lab. The OSM evolution shows that the
error is due to the fact that the proceed action occurs both in transition rule 12
and transition rule 15. As a consequence, the user may keep clicking the proceed
button to perform the interaction modelled by transition rule 12, whereas the
performed proceed results in the execution of rule 15. The error could be pre-
vented by using two distinct actions, that is, two distinct buttons, to enable the
two rules.

5 Conclusion and Future Work

In this paper, we have defined a framework for the formal modelling and analysis
of interactive systems in which multiple users interact with an interconnected
system of servers and clients. To model such an interconnected system we have
defined CLTSs, an extension of LTSs with asynchronous communication and time
constraints. Our approach combines BRDL-based cognitive models of human
components and the CLTS-based models of the computer system components
into an overall system model (OSM). We have implemented our framework with
Real-Time Maude and exploited its model-checking capabilities to formally verify
two interaction properties of a course registration system example. The Maude
code of the example presented in this paper can be downloaded from GitHub1.
1 https://antoniocerone.github.io/Publications/2024/CIFMA/

16 A. Cerone and O. Zhalgendinov

In our framework users are statically assigned to interfaces, as modelled by
the interaction function ϕ. However, in the real world, users frequently need to
switch attention between different interfaces. This is actually common in safety-
critical systems, in which operators are requested to multitask by monitoring
several interfaces at the same time, and is becoming more and more common
in daily life, with multitasking emerging as a trendy life style. Therefore, in our
future work, we are planning to extend our framework to dynamically assign
users to interface.

References

1. Atkinson, R.C., Shiffrin, R.M.: Human memory: A proposed system and its con-
trol processes. In: Spense, K.W. (ed.) The psychology of learning and motivation:
Advances in research and theory II, pp. 89–195. Academic Press (1968)

2. Baddeley, A.: The episodic buffer: a new component of working memory? Trends
Cogn Sci 4(11), 417–423 (2000). https://doi.org/10.1016/s1364-6613(00)01538-2,
https://www.ncbi.nlm.nih.gov/pubmed/11058819

3. Campoy, G.: Evidence for decay in verbal short-term memory: A commentary on
berman, jonides, and lewis (2009). Journal of Experimental Psychology: Learning,
Memory, and Cognition 38(4), 1129–1136 (2012)

4. Cerone, A.: Behaviour and reasoning description language (BRDL). In: SEFM 2019
Collocated Workshops (CIFMA), Lecture Notes in Computer Science, vol. 12226,
pp. 137–153. Springer (2020)

5. Cerone, A.: Modelling and analysing cognition and interaction. In: Formal Methods
for an Informal World, Lecture Notes in Computer Science, vol. 13490, pp. 30–72.
Springer (2023)

6. Dowell, J., Long, J.: Towards a conception for an engineering discipline of human
factors. Ergonomics 32, 1513–1535 (1989)

7. Kirchhoff, K., Ostendorf, M.: Directions for multi-party human-computer interac-
tion research. In: Proc. of HLT-NAACL 2003, pp. 7–9. Association for Computa-
tional Linguistics (2003)

8. Martí-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theo-
retical Computer Science 285(2), 121–154 (2002)

9. Miller, G.A.: The magical number seven, plus or minus two: Some limits on our
capacity to process information. Psychological Review 63(2), 81–97 (1956)

10. Norman, D.A.: Cognitive engineering. In: User-Centred System Design: New Per-
spectives on Human-Computer lnteraction, pp. 31–65. Lawrence Erlbaum Asso-
ciates (1986)

11. Oberauer, K., Jarrold, C., Farrell, S., Lewandowsky, S.: What limits working mem-
ory capacity? Psychological Bulletin 142(7), 758–799 (2016)

12. Ölveczky, P.C.: Real-time maude and its applications. In: Proc. of WRLA 2014,
Lecture Notes in Computer Science, vol. 8663, pp. 42–79. Springer (2001)

13. Ölveczky, P.C.: Designing Reliable Distributed Systems. Undergraduate Topics in
Computer Science, Springer (2017)

14. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time-Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

15. Storrs, G.: A conceptual model of human-computer interaction? Behav. Inf. Tech-
nol. 8(5), 323–334 (1989)

Cognitive Aspects in the Formal Modelling of Multi-party HCI 17

16. Storrs, G.: A conceptualization of rnultiparty interaction. Interacting with Com-
puters 6(2), 173–189 (1994)

17. Tung, T., Gomez, R., Kawahara, T., Matsuyama, T.: Multi-party human-machine
interaction using a smart multimodal digital signage. In: Proc. of HCII 2013, Lec-
ture Notes in Computer Science, vol. 8007„ pp. 408–415. Springer (2013)

18. Weyers, B., Bowen, J., Dix, A., Palanque, P. (eds.): The Handbook of Formal
Methods in Human-Computer Interaction. Human–Computer Interaction Series,
Springer (2017)

