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Abstract. Are the real numbers rich enough to measure intelligence?
We generalize a result of Alexander and Hutter about the so-called Legg-
Hutter intelligence measures of reinforcement learning agents. Using the
generalized result, we exhibit a paradox: in one particular version of
the Legg-Hutter intelligence measure, certain agents all have intelligence
0, even though in a certain sense some of them outperform others. We
show that this paradox disappears if we vary the Legg-Hutter intelligence
measure to be hyperreal-valued rather than real-valued.

1 Introduction

Legg and Hutter proposed [7] a theoretical measure of the intelligence of rein-
forcement learning (RL) agents—agents who interact with environments so as to
maximize a reward signal. They proposed that the intelligence of an agent π be
measured as Υ (π) =

∑
µ 2

−K(µ)V π
µ , where µ ranges over the set of all suitably

well-behaved computable RL environments, K(µ) is the Kolmogorov complexity
of µ, and V π

µ is the expected total reward π achieves in µ.
Because Kolmogorov complexity depends on the choice of a background uni-

versal Turing machine (UTM), the Legg-Hutter intelligence measure also im-
plicitly depends on same. Alexander and Hutter showed [4] that if the UTM is
symmetric in a certain sense, then agents satisfying a self-duality property have
Legg-Hutter intelligence 0. In the present paper we generalize that result. We
show that the Legg-Hutter intelligence of a self-dual agent π is

∑
ν 2

−K(ν)V π
ν

where ν is restricted to only range over those suitably well-behaved computable
environments where the UTM is non-symmetric.

Armed with the above result, we will argue that for a certain choice of UTM,
there are agents π1 and π2 such that Υ (π1) = Υ (π2) = 0 even though in some
sense π1 strictly outperforms π2. We opine that this paradox is due to the inad-
equacy of the real numbers, R, for measuring intelligence. Assuming a technical
condition on the environments in the definition of Υ , we exhibit a variation Υ ∗

taking values in the hyperreal numbers (we do not assume prior familiarity with
the hyperreals, so we gently introduce them using intuition about elections). The
hyperreal-valued Legg-Hutter intelligence measure avoids the above-mentioned
paradox.

The structure of the paper is as follows:
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– In Section 2 we will informally describe our results.

– In Section 3 we will develop preliminaries.

– In Section 4 we will generalize a result of Alexander and Hutter.

– In Section 5 we will discuss what we call almost-symmetric universal Turing
machines.

– In Section 6 we introduce what we call the Garden-of-Eden paradox.

– In Section 7 we introduce a variation of the Legg-Hutter intelligence measure
which is hyperreal-number-valued instead of real-number-valued, and show
that it solves the Garden-of-Eden paradox.

– In Section 8 we respond to anticipated objections.

– In Section 9 we summarize and make concluding remarks.

2 Informal Description of Results

Consider a “Garden of Eden” reinforcement learning environment in which one
action is “forbidden” and all others are “allowed”. If an agent takes the forbid-
den action even one time, then the agent’s total reward from the environment
becomes 0 (there is no way for the agent to recover from its sin). But if the agent
never takes the forbidden action, then its total reward from the environment is
1.

Consider two different agents. Agent A1% is an agent who, every turn, takes
the forbidden action with 1% probability, or takes an allowed action with 99%
probability. Agent A99% is an agent who, every turn, takes the forbidden action
with 99% probability, or takes an allowed action with 1% probability. Using stan-
dard real-valued probability theory, both agents have the same expected total
reward in the Garden of Eden environment, namely, 0. This perhaps counter-
intuitive result is because, over infinitely many turns, the expected probability
of A1% eventually taking the forbidden action is 100%. There are non-standard
variations of probability theory where A1% has greater total expected reward
than A99% (but both these total expected rewards are infinitesimal—hence the
necessity for the number system to be non-Archimedean, i.e., to fail to satisfy
the Archimedean property of R).

We show that by choosing the background universal Turing machine ex-
tremely carefully, we can arrange that for certain agents (including A1% and
A99%), the Legg-Hutter intelligence measure is entirely determined by perfor-
mance in the Garden of Eden: because of said choice of universal Turing machine,
the contributions from all other environments all perfectly cancel each other out.
Thus, the above scandal is elevated from a paradox about probability theory to
a paradox about intelligence measurement. Namely: A1% and A99% both have
Legg-Hutter intelligence 0, even though in an intuitive sense A1% is clearly the
better agent if only the Garden of Eden environment matters. We present a
variation of the Legg-Hutter intelligence measure, taking values in the hyperreal
numbers (a non-Archimedean number system), where the paradox disappears.
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3 Preliminaries

Fix a finite nonempty set A of actions, a finite nonempty set O of observations,
and a finite nonempty set R ⊆ Q ∩ [−1, 1] of rewards. We assume that R is
symmetric, in the sense that R contains −r whenever R contains r. We also
assume 0 ∈ R. We assume A ∩ O = A ∩ R = O ∩ R = ∅. Let ⟨⟩ be the empty
sequence. For any finite sequences s and t, let s ⌢ t be the result of concatenating
t to the end of s.

In the following definitions, we follow [4] except where otherwise indicated.

Definition 1. (Reinforcement learning agents and environments)

1. Let (ORA)∗ be the set of finite sequences of the form o0, r0, a0, . . . , ok, rk, ak
with each oi ∈ O, ri ∈ R, and ai ∈ A; we also include ⟨⟩ in (ORA)∗.

2. Let (ORA)∗OR be the set of all sequences of the form s ⌢ ⟨o, r⟩ where
s ∈ (ORA)∗, o ∈ O, r ∈ R.

3. An agent is a function π, with domain (ORA)∗OR, and with range the
set of Q-valued probability distributions on A. For each s ∈ (ORA)∗OR,
we write π(•|s) for the value of π at s (so π(•|s) is a Q-valued probability
distribution on A), and for each a ∈ A, we write π(a|s) for (π(•|s))(a); we
think of π(a|s) as the probability that the agent will take action a in response
to stimulus s.

4. An environment is a function µ, with domain (ORA)∗ and with range the
set of Q-valued probability distributions on O × R. For each s ∈ (ORA)∗,
we write µ(•|s) for the value of µ at s (so µ(•|s) is a Q-valued probability
distribution on O ×R), and for each (o, r) ∈ O ×R, we write µ(o, r|s) for
(µ(•|s))(o, r); we think of µ(o, r|s) as the probability that the environment
will issue observation o and reward r in response to stimulus s.

Definition 2. (Agent-environment interaction) Let π be any agent. Let µ be
any environment.

1. For every n ∈ N, let V π
µ,n be the expected value of the sum of the rewards in

the sequence (o0, r0, a0, . . . , on, rn, an) randomly generated as follows:
– Choose (o0, r0) ∈ O × R randomly based on the probability distribution

µ(•|⟨⟩).
– Choose a0 ∈ A randomly based on the probability distribution π(•|o0, r0).
– For each 0 < k ≤ n, choose (ok, rk) ∈ O × R randomly based on the

probability distribution µ(•|o0, r0, a0, . . . , ok−1, rk−1, ak−1).
– For each 0 < k ≤ n, choose ak ∈ A randomly based on the probability

distribution π(•|o0, r0, a0, . . . , ok−1, rk−1, ak−1, ok, rk).
2. Let V π

µ = limn→∞ V π
µ,n (if the limit converges to a real number; otherwise

V π
µ is undefined).

Definition 3. An environment µ is well-behaved if:

– µ is computable, and
– For every agent π, V π

µ is defined and −1 ≤ V π
µ ≤ 1.
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Let W be the set of all well-behaved environments.

Definition 4. (Duality)

1. For every sequence s, let s be the result of multiplying every reward in s by
−1.

2. For every agent π, let π, the dual of π, be the agent defined by π(a|s) = π(a|s)
for all a ∈ A, s ∈ (ORA)∗OR.

3. For every environment µ, let µ, the dual of µ, be the environment defined
by µ(o, r|s) = µ(o,−r|s) for all o ∈ O, r ∈ R, s ∈ (ORA)∗.

4. An agent π is self-dual if π = π.
5. An environment µ is self-dual if µ = µ.

Lemma 1. Let π be an agent, µ an environment, n ∈ N.

1. π = π and µ = µ.
2. V π

µ,n = −V π
µ,n.

3. V π
µ = −V π

µ (and the left-hand side is defined iff the right-hand side is).

4. V π
µ,n = −V π

µ,n.

5. V π
µ = −V π

µ (and the left-hand side is defined iff the right-hand side is).
6. µ is well-behaved iff µ is well-behaved.

Proof. Parts 1, 3, 5 and 6 are proved in [4]. The proofs of 3 and 5 in [4] work by
proving 2 and 4. ⊓⊔

For any sets X and Y , we write f : ⊆X → Y to indicate that f is a function
with codomain Y and with domain some subset of X.

Definition 5. (Prefix-free universal Turing machines) Let 2∗ be the set of finite
binary strings.

1. A function f : ⊆2∗ → 2∗ is prefix-free if f is computable and for all p, p′ ∈
2∗, if f(p) and f(p′) are defined, then p is not a strict initial segment of p′.

2. A prefix-free universal Turing machine (or PFUTM) is a prefix-free function
U : ⊆2∗ → 2∗ such that for every prefix-free f : ⊆2∗ → 2∗, ∃y ∈ 2∗ such that
∀x ∈ 2∗, f(x) = U(y ⌢ x) (we call such a y a computer program for f in
programming language U).

We fix a computable Gödel numbering ⌜•⌝ : (ORA)∗ → 2∗ assigning to each
s ∈ (ORA)∗ a code ⌜s⌝ ∈ 2∗. Likewise, if M is the set of Q-valued probability
distributions on O × R, we fix a computable Gödel numbering1 ⌜•⌝ : M → 2∗

assigning to each p ∈ M a code ⌜p⌝ ∈ 2∗. We assume that for all x, y ∈ (ORA)∗∪
M with x ̸= y, ⌜x⌝ is not an initial segment of ⌜y⌝ and ⌜x⌝ is not a terminal
segment of ⌜y⌝. In other words, we assume ⌜•⌝ is both prefix-free and suffix-
free. By fixing ⌜•⌝ we differ from [4], where the dependence of concepts such as
Kolmogorov complexity (in the following definition) on ⌜•⌝ was emphasized.

1 This makes sense because O ×R is finite.
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Definition 6. (Kolmogorov complexity)

– If µ is an environment and U is a PFUTM, we say that a function f :
⊆2∗ → 2∗ encodes µ if the following condition holds: For every s ∈ (ORA)∗,
f(⌜s⌝) = ⌜µ(•|s)⌝.

– For every computable environment µ and PFUTM U , let KU (µ) be the Kol-
mogorov complexity of µ given by U , by which we mean the least n ∈ N such
that there exists a computer program of length n in programming language
U for some f : ⊆2∗ → 2∗ which encodes µ.

Definition 7. A PFUTM U is symmetric if the following condition holds: for
every computable environment µ, KU (µ) = KU (µ).

In [4] it is shown that symmetric PFUTMs exist. In fact, the proof there shows
more: there is a mechanical procedure for transforming any given PFUTM into
a symmetric PFUTM.

In the following definition, we generalize the definition from [4] by introducing
a new parameter W0, for reasons which will become clear in Section 7.2. In [4],
implicitly W0 = W .

Definition 8. (Legg-Hutter intelligence) Let U be a PFUTM and W0 ⊆ W a set
of well-behaved environments. For every agent π, the Legg-Hutter intelligence of
π according to U,W0 is defined to be

ΥU,W0(π) =
∑

µ∈W0

2−KU (µ)V π
µ

(the infinite sum is absolutely convergent by comparison with the sum defining
Chaitin’s constant, thus the sum does not depend on the order in which W0 is
enumerated).

The Legg-Hutter intelligence ΥU,W0
(π) of an agent π (according to U,W0) is

intended to measure π’s performance by averaging π’s expected performance over
the environments in W0, using Kolmogorov complexity to assign lower weight to
more contrived environments.

Theorem 1. Let U be a symmetric PFUTM and let π be an agent.

1. ΥU,W (π) = −ΥU,W (π).
2. If π is self-dual then ΥU,W (π) = 0.

Proof. See [4]. ⊓⊔

4 A Generalization of Theorem 1 part 2

Definition 9. A set W0 of well-behaved environments is symmetric if the fol-
lowing condition holds: for every µ ∈ W0, µ ∈ W0.

Note that W itself is symmetric by Lemma 1 part 6.
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Lemma 2. If environment µ and agent π are both self-dual, then V π
µ = 0.

Proof. To show V π
µ = 0, it suffices to show V π

µ = −V π
µ . Compute:

V π
µ = V π

µ
(Lemma 1 part 1)

= −V π
µ (Lemma 1 part 3)

= −V π
µ . (Self-duality)

⊓⊔

The following theorem is a generalization of Theorem 1 part 2.

Theorem 2. Let U be any PFUTM. Let W0 ⊆ W be symmetric. Let Z = {µ ∈
W0 : KU (µ) ̸= KU (µ)} be the set of asymmetries of KU . For any self-dual agent
π, ΥU,W0

(π) =
∑

µ∈Z 2−KU (µ)V π
µ .

Proof. Since
∑

µ∈W0
2−KU (µ)V π

µ =
∑

µ∈Z 2−KU (µ)V π
µ +

∑
µ∈W0\Z 2−KU (µ)V π

µ , it

suffices to show
∑

µ∈W0\Z 2−KU (µ)V π
µ = 0. LetW1 = {µ ∈ W0\Z : µ is self-dual}.

Let W2 ⊆ W0\(Z ∪W1) be a maximal set such that for every µ ∈ W2, µ ̸∈ W2.
Let W3 = {µ : µ ∈ W2}. It follows that W0\Z is the disjoint union of W1, W2,
W3. Thus:∑

µ∈W0\Z

2−KU (µ)V π
µ

=
∑

µ∈W1

2−KU (µ)V π
µ +

∑
µ∈W2∪W3

2−KU (µ)V π
µ (W1 ∩ (W2 ∪W3) = ∅)

=
∑

µ∈W1

0 +
∑

µ∈W2∪W3

2−KU (µ)V π
µ (Lemma 2)

=
∑

µ∈W2

(2−KU (µ)V π
µ + 2−KU (µ)V π

µ ) (Definition of W3)

=
∑

µ∈W2

(2−KU (µ)V π
µ + 2−KU (µ)V π

µ ) (KU (µ) = KU (µ) by def. of Z)

=
∑

µ∈W2

(2−KU (µ)V π
µ − 2−KU (µ)V π

µ ) (Lemma 1 part 5)

=
∑

µ∈W2

(2−KU (µ)V π
µ − 2−KU (µ)V π

µ ) (π is self-dual)

=
∑

µ∈W2

0 = 0.

⊓⊔
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5 Almost-symmetric PFUTMs

The infinite sum defining Legg-Hutter intelligence seems inherently intractable
at first glance (if W0 is nontrivial). Theorem 1 (part 2) was (in [4]) the first
explicit computation of Legg-Hutter intelligence for a computable agent. In this
section, we will develop machinery which will allow explicit computation of some
non-integer Legg-Hutter intelligences.

Definition 10. Let U be a PFUTM and let µ be a computable environment.
We say U is almost symmetric except at µ if the following requirements are
satisfied:

1. KU (µ) ̸= KU (µ).
2. KU (ν) = KU (ν) for every computable environment ν ̸∈ {µ, µ}.
Proposition 1. For every computable environment µ such that µ is not self-
dual, there exists a PFUTM which is almost symmetric except at µ. In fact, for
all positive integers m ̸= n, there exists a PFUTM U such that KU (µ) = m,
KU (µ) = n, and KU (ν) = KU (ν) for every computable environment ν ̸∈ {µ, µ}.
Proof. Let U0 be any symmetric PFUTM. Let yµ (resp. yµ) be a computer
program for µ (resp. µ) in programming language U0. Let t1 = ⟨1⟩, t2 = ⟨0, 1⟩,
t3 = ⟨0, 0, 1⟩, and so on. Let U : ⊆2∗ → 2∗ be defined by

U(s) =


U0(yµ ⌢ x) if s = tm ⌢ x;

U0(yµ ⌢ x) if s = tn ⌢ x;

U0(x) if s = tm+n ⌢ x;

undefined in any other case.

It is easy to see: U is a PFUTM; tm is a computer program for µ in programming
language U (and no shorter computer program for µ in programming language
U exists); tn is a computer program for µ in programming language U (and no
shorter computer program for µ in programming language U exists); and that
for every computable environment ν ̸∈ {µ, µ}, the computer programs for ν in
programming language U are exactly those strings tm+n ⌢ y such that y is a
computer program for ν in programming language U0. It follows that U witnesses
the proposition. ⊓⊔
Theorem 3. If µ is a well-behaved environment, U is a PFUTM which is
almost-symmetric except at µ, W0 ⊆ W is symmetric, µ ∈ W0, and π is a
self-dual agent, then

ΥU,W0
(π) = (2−KU (µ) − 2−KU (µ))V π

µ .

Proof. Compute:

ΥU,W0
(π) = 2−KU (µ)V π

µ + 2−KU (µ)V π
µ (Theorem 2)

= 2−KU (µ)V π
µ − 2−KU (µ)V π

µ (Lemma 1 part 5)

= 2−KU (µ)V π
µ − 2−KU (µ)V π

µ . (Self-duality of π)

⊓⊔
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By carefully choosing µ and π, one can use Theorem 3 to obtain explicit
nonzero Legg-Hutter intelligences. For example, for any nonzero α ∈ R, let µ be
a computable environment which ignores the agent’s actions and always gives
initial reward α and reward 0 forever thereafter, regardless of anything the agent
does. So V π

µ = α for every agent π. Since α ̸= 0, µ is not self-dual. By Proposition
1, there is, for example, a PFUTM U which is almost-symmetric except at µ, such
that KU (µ) = 1, KU (µ) = 2. By Theorem 3, ΥU,W (π) = (2−1 − 2−2)V π

µ = α/4
for every self-dual agent π.

6 A Garden-of-Eden Paradox

For the rest of the paper, we assume there are at least two distinct actions in
the action-set A. We also assume that the reward-set R contains 1 and −1.

Definition 11. Let X ∈ A. An X-forbidding Garden of Eden is an environment
µ such that the following conditions hold:

1. (“µ gives initial reward 1 with probability 100%”) For all o ∈ O and r ∈ R,
if µ(o, r|⟨⟩) > 0 then r = 1.

2. (“µ gives reward −1 after the first X action, if ever, and reward 0 in all
other situations”) For every sequence s ⌢ ⟨a, o, r⟩ ∈ (ORA)∗OR such that
µ(o, r|s ⌢ ⟨a⟩) > 0,
(a) If a = X and X does not occur in s, then r = −1.
(b) Otherwise, r = 0.

Thus, when an agent π interacts with an X-forbidding Garden of Eden µ,
initially π gets a reward of 1. As long as π does not take action X, π maintains
that reward of 1. But if π ever takes action X, then π immediately loses that
full reward, and π’s total cumulative reward is always 0 forever thereafter.

Definition 12. For all X,Y ∈ A (with X ̸= Y ) and all q ∈ [0, 1]∩Q, let πq,X,Y

be the agent which always takes action X with probability q or takes action Y
with probability 1− q. So for every c ∈ A and every s ∈ (ORA)∗OR,

πq,X,Y (c|s) =


q if c = X

1− q if c = Y

0 otherwise.

Lemma 3. For all q,X, Y as in Definition 12, πq,X,Y is self-dual.

Proof. Clearly πq,X,Y (c|s) does not depend on the rewards in s, so πq,X,Y (c|s) =
πq,X,Y (c|s). By arbitrariness of s, πq,X,Y = πq,X,Y . ⊓⊔

Lemma 4. For each X ∈ A, if µ is an X-forbidding Garden of Eden, then µ is
not self-dual.

Proof. Clearly µ gives initial reward −1, whereas µ gives initial reward 1. Thus
µ ̸= µ. ⊓⊔
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Corollary 1. For every X ∈ A, there exists an X-forbidding Garden of Eden
µ and a PFUTM U such that U is almost symmetric except at µ, and such that
KU (µ) = 1 and KU (µ) = 2.

Proof. Clearly there exists some X-forbidding Garden of Eden µ. By Lemma 4,
µ is not self-dual. The corollary now follows by Proposition 1. ⊓⊔

Theorem 4. Let X,Y ∈ A, with X ̸= Y . Let µ be an X-forbidding Garden
of Eden. Let U be a PFUTM which is almost symmetric except at µ, such that
KU (µ) = 1 and KU (µ) = 2. Let W0 ⊆ W be symmetric with µ ∈ W0. For every
q ∈ (0, 1] ∩Q, ΥU,W0

(πq,X,Y ) = 0.

Proof. By Theorem 3, ΥU,W0
(πq,X,Y ) = (2−1 − 2−2)V

πq,X,Y
µ = 1

4V
πq,X,Y
µ . For ev-

ery n ∈ N, if (o0, r0, a0, . . . , on, rn, an) are chosen randomly as in the definition of
V

πq,X,Y
µ,n (Definition 2), then, since πq,X,Y always takes action X with probability

q, the probability that every ai ̸= X (for i = 0, . . . , n− 1) is (1− q)n. If so, then
by Definition 11 it follows that r0 + · · · + rn = 1 + 0 + · · · + 0 = 1. Otherwise,
by Definition 11 it follows that r0 + · · ·+ rn = 0. Thus

V πq,X,Y
µ,n = 1 · (1− q)n + 0 · (1− (1− q)n).

Since q ∈ (0, 1], it follows that V
πq,X,Y
µ = limn→∞ V

πq,X,Y
µ,n = 0. ⊓⊔

Theorem 4 is paradoxical because if 0 < q1 < q2 < 1 then πq1,X,Y ought to be
strictly more performant than πq2,X,Y in the X-forbidding Garden of Eden µ. If
U,W0 are as in Theorem 4 then ΥU,W0 measures self-dual agent intelligence purely
based on performance in µ. Thus, ΥU,W0

measures intelligence entirely based on
an agent’s tendency to avoid taking the forbidden action X. Since πq1,X,Y is
less likely to take action X than πq2,X,Y at each particular moment, the former
agent ought to be considered more intelligent if intelligence is measured purely
in terms of performance in this µ.

Theorem 4 shows that Legg-Hutter intelligence can be misleading even in a
practical sense. Suppose we need an agent to perform in an X-forbidding Garden
of Eden not for eternity, but for some unspecified positive number of steps. If
our only options are πq1,X,Y and πq2,X,Y , where 0 < q1 < q2 < 1, then πq1,X,Y is
objectively the better choice, but ΥU,W (πq1,X,Y ) = ΥU,W (πq2,X,Y ) = 0 suggests
that either option is just as good as the other.

This paradox is, of course, not surprising to the reader familiar with proba-
bility or measure theory. It falls under the same umbrella as the fact that if S
and T are two countable subsets of R and m is, e.g., Lebesgue measure, then
m(S) = m(T ) = 0 even if S is a strict subset of T . In the Lebesgue measure case,
what the paradox really shows is that m does not perfectly capture the notion
of the size of a set. If it did, then S ⊊ T would imply m(S) < m(T ). In the
same way, Theorem 4 shows that, at least for the contrived PFUTM in question,
Legg-Hutter intelligence does not perfectly capture environmental performance
of an agent.

This is not a condemnation of Legg-Hutter intelligence any more than it is a
condemnation of Lebesgue measure. If the so-called regularity property, i.e. that
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S ⊊ T implies m(S) < m(T ), is desired, one can attain it via measures taking
their values from other number systems than the reals, such as the hyperreal
number system; see [5]. In the next section, we will resolve the above Garden
of Eden paradox, by introducing a hyperreal-valued variation of Legg-Hutter
intelligence.

7 Legg-Hutter intelligence using nonstandard analysis

We will propose a hyperreal-valued variation of Legg-Hutter intelligence where
the paradox in the previous section disappears. We do not assume the reader is
familiar with the hyperreals, so we will briefly review (one construction of) the
hyperreals.

7.1 Free ultrafilters and the hyperreal numbers

To intuitively motivate ultrafilters2, it is instructive to imagine that the natural
numbers are voters who cast ballots in order to decide true-or-false questions
about functions f : N → R. For example, if the question is whether or not
f : N → R is larger on average than g : N → R, we could consider each n ∈ N to
vote as follows:

– If f(n) > g(n), then n votes that f is larger than g on average.
– If f(n) ≤ g(n), then n votes that f is not larger than g on average.

One way to decide the outcome of such elections would be to decide in ad-
vance which sets of voters are majorities. Having suitably decided this, the win-
ning candidate would be whichever candidate has a majority of voters vote for it.
What properties should a choice of majorities satisfy? Three axioms immediately
come to mind:

Definition 13. Let p ⊆ P(N) be a set of subsets of N, thought of as majorities.

– (Properness) p satisfies the Properness axiom if ∅ ̸∈ p. (If no-one votes for
you, you lose.)

– (Monotonicity) p satisfies the Monotonicity axiom if the following require-
ment holds. For every X ∈ p, for every Y ⊆ N, if Y ⊇ X then Y ∈ p. (More
votes can’t hurt.)

– (Maximality) p satisfies the Maximality axiom if the following requirement
holds. For every X ⊆ N, either X ∈ p or Xc = {n ∈ N : n ̸∈ X} ∈ p. (The
election must have a winner.)

2 For a humorous presentation of this intuition in the form of a Socratic dialog, see
[1]. This electoral motivation of ultrafilters was first made explicit in [2], though
the theoretical underpinnings appeared in [6]. For a more direct application of the
same idea to RL intelligence measurement, without any reference to Kolmogorov
complexity or computability, see [3].
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A fourth axiom is counter-intuitive when one thinks of elections, but intuitive
when one considers that the answers to questions about transitive properties
should be transitive. For example: if the voters decide that f is larger on average
than g, and also that g is larger on average than h, then the voters ought to
decide that f is larger on average than h. If Xfg = {n ∈ N : f(n) > g(n)},
Xgh = {n ∈ N : g(n) > h(n)}, and Xfh = {n ∈ N : f(n) > h(n)}, then by
linearity of <, we have Xfh ⊇ Xfg ∩ Xgh. Thus, given Monotonicity, a simple
way to force our election decision to be so consistent is to impose the following
axiom.

Definition 14. Let p ⊆ P(N) be a set of subsets of N, thought of as majorities.

– (∩-Closure) p satisfies the ∩-Closure axiom if the following requirement
holds. For all X,Y ∈ p, X ∩ Y ∈ p.

One trivial way to realize all four of the above axioms is as follows: choose
some n0 ∈ N as a dictator and declare that whoever n0 votes for, automatically
wins. For example, this would amount to declaring that f is larger on average
than g iff f(n0) > g(n0). This is clearly a poor way to decide elections. Therefore,
we propose the following axiom.

Definition 15. Let p ⊆ P(N) be a set of subsets of N, thought of as majorities.

– (Non-Dictatorship) p satisfies the Non-Dictatorship axiom if the following
requirement holds. For every n0 ∈ N, {n0} ̸∈ p.

Although the above five axioms seem concrete, by combining them together
we actually arrive at a mathematical concept which, without the above motiva-
tion, would seem quite abstract.

Definition 16. A set p ⊆ P(N) of subsets of N is an ultrafilter on N (or simply
an ultrafilter) if p satisfies the Properness, Monotonicity, Maximality, and ∩-
closure axioms. An ultrafilter is free if it also satisfies the Non-Dictatorship
axiom.

The following lemma is well-known and we state it without proof. We men-
tion, however, that logicians have proven that this lemma cannot be proved
constructively; all of its proofs are necessarily non-constructive.

Lemma 5. There exists a free ultrafilter on N.

Lemma 5 allows us to decide elections. Namely: fix a free ultrafilter p on N,
and declare that whenever the naturals vote in an election between candidates
c1 and c2, then candidate ci wins the election iff {n ∈ N : n votes for ci} ∈ p.
Such an i exists by Maximality; the Properness and ∩-Closure axioms ensure i
is unique.

For the rest of the paper, fix a free ultrafilter p on N.
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Definition 17. If f, g : N → R, declare f ∼ g iff f and g are equally large
on average, as voted by N, using p to decide the election. That is, f ∼ g iff
{n ∈ N : f(n) = g(n)} ∈ p. Clearly ∼ is an equivalence relation.

– For every f : N → R, let [f ] be the ∼-equivalence class which contains f . Let
∗R = {[f ] : f : N → R}; we call ∗R the set of hyperreal numbers.

– For all f, g : N → R, we define [f ] + [g] = [f + g] and [f ] · [g] = [f · g].
– For all f, g : N → R, we declare [f ] < [g] iff g is larger on average than f ,

as voted by N, using p to decide the election. That is, [f ] < [g] iff {n ∈ N :
f(n) < g(n)} ∈ p.

The following lemma is well-known and we state it without proof.

Lemma 6. The operations in Definition 17 parts 2 and 3 are well-defined. The
resulting structure (∗R,+, ·, <) is an ordered field extension of R (we consider
R to be embedded in ∗R by identifying every r ∈ R with the equivalence class
[n 7→ r] of the corresponding constant function).

In the following lemma, we collect a few well-known facts which we state
without proof. These are straightforward to prove and we invite the reader to
try to prove them.

Lemma 7. 1. If X ⊆ N is finite, then X ̸∈ p.
2. Suppose f, g : N → R. If f(n) > g(n) for all n ∈ N, then [f ] > [g].
3. Suppose f : N → R. If limn→∞ f(n) exists, then for every real ϵ > 0, the

difference |[f ]− limn→∞ f(n)| < ϵ. In other words, the distance between [f ]
and limn→∞ f(n) is zero or infinitesimal.

7.2 Hyperreal-valued Legg-Hutter intelligence

In Definition 8, the infinite sum
∑

µ∈W0
2−KU (µ)V π

µ does not depend on the
order in which W0 is enumerated, because the sum is absolutely convergent.
Said absolute convergence is a consequence of the requirement −1 ≤ V π

µ ≤ 1
in the definition of well-behaved environments (Definition 3). In order to define
a hyperreal-valued Legg-Hutter intelligence, we would like to instead consider
sums

∑
µ∈W0

2−KU (µ)V π
µ,n for various n ∈ N. Unfortunately, such sums are not

necessarily convergent, much less absolutely convergent. This is because even
though −1 ≤ V π

µ ≤ 1, there is, a priori, no bound at all on V π
µ,n. For this

reason, we must restrict attention to even better-behaved environments (this
is the reason why we generalized Legg-Hutter intelligence by introducing the
additional parameter W0).

Definition 18. An environment µ is strongly well-behaved if the following re-
quirements hold.

1. µ is well-behaved.
2. For every agent π and n ∈ N, −1 ≤ V π

µ,n ≤ 1.

Lemma 8. The set of strongly well-behaved environments is symmetric.
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Proof. Follows by Lemma 1 part 4. ⊓⊔

The following variation of Legg-Hutter intelligence is hyperreal-valued in-
stead of real-valued. This increased granularity will allow the measure to distin-
guish between the agents which the real-valued measure failed to distinguish in
Section 6.

Definition 19. (Hyperreal-valued Legg-Hutter intelligence) Let U be a PFUTM
and let W0 ⊆ W be a set of strongly well-behaved environments. For every agent
π, the hyperreal-valued Legg-Hutter intelligence of π according to U,W0 (and,
implicitly, p) is defined to be

Υ ∗
U,W0

(π) =

n ∈ N 7→
∑

µ∈W0

2−KU (µ)V π
µ,n

 ∈ ∗R

(the infinite sums in question are defined, and are independent of the order in
which W0 is enumerated, because they are absolutely convergent by comparison
with Chaitin’s constant).

We want to show that Υ ∗
U,W0

does not differ much from ΥU,W0
. In order to do

this, we will need a theorem from real analysis called Tannery’s Theorem. This
theorem is standard, so we state it without proof.

Lemma 9. (Tannery’s Theorem) Assume {ai : N → R}∞i=0 is a sequence of
sequences such that each limn→∞ ai(n) converges. Assume w0, w1, . . . ∈ R satisfy∑∞

i=0 wi < ∞ and for all i, n ∈ N, |ai(n)| ≤ wi. Then

lim
n→∞

∞∑
i=0

ai(n) =

∞∑
i=0

lim
n→∞

ai(n).

The following theorem shows that Υ ∗
U,W0

(π) is infinitely close to ΥU,W0
(π).

Theorem 5. For any U,W0, π as in Definition 19, ΥU,W0
(π) and Υ ∗

U,W0
(π) differ

by an amount smaller than any positive real number.

Proof. We assume W0 is infinite (the other case is similar and easier). Let
µ0, µ1, . . . enumerate W0 (this is possible because the environments in W0 are
well-behaved, thus computable, thus countable). By Tannery’s Theorem (Lemma
9) with ai(n) = 2−KU (µi)V π

µi,n and wi = 2−KU (µi),

lim
n→∞

∞∑
i=0

2−KU (µi)V π
µi,n =

∞∑
i=0

lim
n→∞

2−KU (µi)V π
µi,n.

Since all the µ ∈ W0 are strongly well-behaved, it follows that all the infinite
sums in question are absolutely convergent and so do not depend on the order
of summation, so we can conclude (∗)

lim
n→∞

∑
µ∈W0

2−KU (µ)V π
µ,n =

∑
µ∈W0

lim
n→∞

2−KU (µ)V π
µ,n.
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Thus:

ΥU,W0
(π) =

∑
µ∈W0

2−KU (µ)V π
µ (Definition 8)

=
∑

µ∈W0

2−KU (µ) lim
n→∞

V π
µ,n (Definition 2 part 2)

=
∑

µ∈W0

lim
n→∞

2−KU (µ)V π
µ,n (Algebra)

= lim
n→∞

∑
µ∈W0

2−KU (µ)V π
µ,n. (By ∗)

The theorem now follows by Lemma 7 part 3. ⊓⊔

To show that Υ ∗
U,W0

avoids the Garden of Eden paradox, we will need to
restate some of our above results for finite values of n instead of n = ∞.

Lemma 10. Let n ∈ N.

1. (Compare Lemma 2) If π is a self-dual agent and µ is a self-dual environ-
ment, then V π

µ,n = 0.
2. (Compare Theorem 2) For any PFUTM U , for any symmetric W0 ⊆ W , if

Z = {µ ∈ W0 : KU (µ) ̸= KU (µ)} is the set of asymmetries of KU , then for
any self-dual agent π,∑

µ∈W0

2−KU (µ)V π
µ,n =

∑
µ∈Z

2−KU (µ)V π
µ,n.

3. (Compare Theorem 3) For any strongly well-behaved environment µ, for any
PFUTM U which is almost-symmetric except at µ, for any symmetric W0 ⊆
W with µ ∈ W0, for any self-dual agent π,∑

ν∈W0

2−KU (ν)V π
ν,n = (2−KU (µ) − 2−KU (µ))V π

µ,n.

Proof. (1) Similar to the proof of Lemma 2, but use Lemma 1 part 2 instead of
Lemma 1 part 3.

(2) Similar to the proof of Theorem 2, but use (1) instead of Lemma 2 and
use Lemma 1 part 4 instead of Lemma 1 part 5.

(3) Similar to the proof of Theorem 3, but use (2) instead of Theorem 2 and
use Lemma 1 part 4 instead of Lemma 1 part 5.

Finally, we show that the hyperreal Legg-Hutter intelligence measure is free
of the pathological behavior from Section 6.

Theorem 6. (Contrast Theorem 4) Let X,Y ∈ A, with X ̸= Y . Let µ be a
well-behaved X-forbidding Garden of Eden. Let U be a PFUTM which is al-
most symmetric except at µ, such that KU (µ) = 1 and KU (µ) = 2. Let W0 be
a symmetric set of strongly well-behaved environments, with µ ∈ W0. For all
q1, q2 ∈ (0, 1] ∩Q with q1 < q2, we have Υ ∗

U,W0
(πq1,X,Y ) > Υ ∗

U,W0
(πq2,X,Y ).
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Proof. By Definition 11, clearly µ is strongly well-behaved. By Lemma 10 part
3, for every n ∈ N, for each i ∈ {1, 2},

∑
ν∈W0

2−KU (ν)V
πqi,X,Y
ν,n = 1

4V
πqi,X,Y
µ,n . As

in the proof of Theorem 4, for every n ∈ N, for each i ∈ {1, 2},

V
πqi,X,Y
µ,n = 1 · (1− qi)

n + 0 · (1− (1− qi)
n).

The theorem now follows by Lemma 7 part 2. ⊓⊔

There might be other approaches to Legg-Hutter intelligence avoiding the
Garden of Eden paradox. For example, in [8], Pedersen builds alternate foun-
dations of nonstandard probability theory along similar lines to de Finetti’s
foundations of standard probability, without certain limitations of the latter. It
might be possible to apply these nonstandard probability theory foundations to
the problem.

8 Anticipated Objections

8.1 What does it really matter if the agent takes the forbidden
action only 1% of the time or 99% of the time? In an infinite
Garden of Eden interaction, either agent will eventually take
the forbidden action with probability 100%.

In standard probability theory, an event having probability 100% does not nec-
essarily mean that it is certain. In order to resolve the probability distribution
output by the agent on the nth turn into an actual action, we might imagine
that a random number xn ∈ [0, 1) is generated. For the 1% agent, the nth action
is the forbidden action iff xn < 0.01. For the 99% agent, the nth action is the
forbidden action iff xn < 0.99. If S1% = {(x1, x2, . . .) ∈ [0, 1)∞ : ∀n, xn ≥ 0.01}
(the event of the 1% agent going for all eternity without taking the forbidden ac-
tion), and S99% = {(x1, x2, . . .) ∈ [0, 1)∞ : ∀n, xn ≥ 0.99} (the event of the 99%
agent going all eternity without taking the forbidden action), then S1% ⊊ S99%.

Furthermore, in actual practice, we never run an RL agent for all eternity.
At most, we run the agent for some indeterminite finite number of steps. Clearly
the 1% forbidden action agent beats the 99% forbidden action agent in this case.

8.2 The PFUTM in Theorem 4 is too contrived for us to draw
conclusions about intelligence measurement in more realistic
contexts

We conjecture that similar paradoxes are embedded in Legg-Hutter intelligence
measures based on more familiar PFUTMs, but it is difficult to explicitly exhibit
them because of the intractible nature of the infinite sum defining Legg-Hutter
intelligence.
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8.3 The non-constructive nature of Lemma 5 renders Υ ∗
U,W0

impractical to calculate

It is already impossible to compute ΥU,W0
. In fact, the Kolmogorov complexity

function itself is already non-computable, so we cannot generally even compute
individual summands in the infinite sum defining ΥU,W0(π). One could actually
argue that in a sense, Υ ∗

U,W0
is easier to approximate than ΥU,W0 . Here is what

we mean by this. If one were to approximate the Legg-Hutter intelligence of
πq1,X,Y and πq2,X,Y (in the context of Theorem 4) by running large amounts of
finite agent-environment interactions (Monte Carlo style), one would see πq1,X,Y

outperforming πq2,X,Y if q1 ≪ q2, which is consistent with Theorem 6 and in-
consistent with Theorem 4.

8.4 A better way to resolve the paradox would be to use discount
factors

The Garden-of-Eden paradox in Theorem 4 would disappear if one applied a
discount factor in the definition of V π

µ , say, weighing each nth reward by γn for
some fixed discount factor γ ∈ (0, 1). And indeed, one could treat the paradox
as evidence in favor of applying such discount factors. But Legg and Hutter
specifically elected, in [7], not to use discount factors, and gave good reasons for
their decision.

9 Summary and conclusion

In Theorem 2 we generalized a result of Alexander and Hutter [4]. In Theorem 4
we used this to show that if the background universal Turing machine is carefully
chosen, so that Legg-Hutter intelligence measures performance in one particular
“Garden of Eden” environment, then, paradoxically, certain agents all have Legg-
Hutter intelligence 0 despite the fact that in some sense some of them outperform
others in said environment. We opine that this Garden-of-Eden paradox results
from the coarseness of the real numbers. In Theorems 5 and 6 we show that
the paradox can be resolved by allowing the Legg-Hutter intelligence measure
to take its values from the hyperreal number system, a more granular number
system than R.
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