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Abstract. Human reading is characterized by selective visual attention
and efficient text processing, often involving perceptual skipping and
sparse sampling of input. These phenomena suggest that human cog-
nition naturally employs strategies for reducing information load while
preserving recognition accuracy. Motivated by this observation, this re-
search paper investigates a class of online string matching algorithms
based on text sampling, wherein comparisons are restricted to strategi-
cally selected positions or characters chosen by structural properties of
the pattern. We examine the extent to which such sampling heuristics
align with human reading behaviors as observed in eye-tracking data.
By conducting a comparative experimental analysis between algorithmic
matching processes and human visual search trajectories, we demonstrate
that computationally optimal sampling strategies often reflect regular-
ities found in biological perception. These findings support a broader
interdisciplinary framework in which cognitively plausible models can in-
form algorithm design and, conversely, algorithmic efficiency principles
may yield insights into perceptual mechanisms.
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1 Introduction

String matching is a fundamental problem in computer science [5,25], with ap-
plications spanning diverse fields such as natural language processing, informa-
tion retrieval, and computational biology. The goal is to locate all occurrences
of a given pattern x of length m within a text y of length n, where both se-
quences consist of characters from an alphabet Σ of size σ. Over the years, two
primary paradigms have been developed to address this problem: online and
offline string matching. Online algorithms, such as the Knuth-Morris-Pratt algo-
rithm [22], process the text in real time, achieving a worst-case time complexity
of O(n), while heuristics like the Boyer-Moore algorithm [3] enhance practi-
cal performance by efficiently skipping portions of the text. In contrast, offline
approaches preprocess the text to construct an index, enabling rapid query res-
olution. Prominent examples include suffix trees [1], which offer an O(m+ occ)
worst-case time, suffix arrays [24] with a time complexity of O(m+ log n+ occ),
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where occ it the number of occurrences of the searched pattern, and the FM-
index [16], a compressed structure derived from the Burrows-Wheeler transform
that combines input compression with efficient substring queries. However, these
full-indexes require additional storage space, ranging from four to twenty times
the size of the text size.

To mitigate this space complexity, sampled string matching has emerged as
an alternative approach, first introduced by Vishkin [38]. Instead of construct-
ing a full index, sampled string matching builds a reduced representation of
the text by selectively storing sampled portions, significantly reducing memory
usage while preserving search efficiency. It has been demonstrated that once a
sampled index is constructed, any online string matching algorithm can be ap-
plied directly to it, requiring only a small verification phase [10]. This hybrid
approach balances memory efficiency with computational performance, making
it an attractive alternative to traditional full-index methods.

Beyond Vishkin’s theoretical approach, a particularly successful advance-
ment in this area is the Character Distance Sampling (CDS) technique [12],
which records distances between occurrences of selected pivot characters instead
of storing absolute positions. This method, initially designed for online string
matching, achieves remarkable search efficiency while maintaining a compact
partial index, often requiring as little as 5% of the original text size.

CDS has also been successfully extended to offline string matching [9,14],
demonstrating a search time improvement of up to 91% compared to standard
indexed approaches, while using less than 15% of the space required for a full
suffix array. These improvements make CDS a promising technique for large-scale
text processing, particularly when computational resources are constrained. The
code of the preprocessing phase is detailes in Fig. 1.

Compute-Distance-Sampling(y, n, C)
1. ȳ ← ⟨⟩
2. j ← 0
3. p← 0
4. for i← 1 to n do
5. if y[i] ∈ C then
7. ȳ[j]← i− p
6. j ← j + 1
8. p← i
9. return (ȳ, j)

Compute-Position-Sampling(y, n, C, k)
1. ẏ ← ⟨⟩
4. j ← 0
5. for i← 1 to n do
8. if y[i] ∈ C then
10. ẏ[j]← i
9. j ← j + 1
12. return (ẏ,j)

Fig. 1. (On the left) The pseudocode of procedure Compute-Distance-Sampling for
the construction of the character distance sampling version of a text y. (On the right)
The pseudocode of procedure Compute-Position-Sampling for the construction of
the character position sampling version of a text y.
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Despite the advantages of sampling algorithms, both techniques have been
shown to be ineffective for small alphabets, such as those found in genomic se-
quences. To overcome this limitation, Faro et al. [13] introduced a novel approach
leveraging q-grams to artificially expand the alphabet size, thereby enabling the
use of sampling-based indexing methods even for small-alphabet domains. This
enhancement allows sampled string matching to be applied in bioinformatics and
other fields where the underlying alphabet is inherently small.

Although Character Distance Sampling has demonstrated its efficiency, it
relies on a distance representation that requires multiple bytes, making it chal-
lenging to store compactly. To address this, a new space-efficient decomposition
known as Fake Decomposition was introduced [11]. This technique allows for
a significant reduction in the space required to store sampled indexes without
compromising search accuracy.

In theory, bounding all distances by 256 would allow storage within a single
byte. However, this constraint is often impractical in real-world scenarios. Fig-
ure 2 presents the greatest and average distances for each character, sorted by
rank, in an English text alphabet.
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Fig. 2. Maximum and average distances between two consecutive occurrences, com-
puted for the most frequent characters in a natural language text. On the x axis
characters are ordered on the base of their rank value, in a non decreasing order. The
red line represents the ideal bound 256.

Recently, new sampling representations have been developed to extend sam-
pled string matching beyond traditional exact matching. Monotonic Run-Length
Scaling (MRLX) and Monotonic Run-Length Sampling (MRLS) [15] have been
proposed to handle non-classical string matching tasks, particularly Order Pre-
serving Pattern Matching (OPPM) [21] and Cartesian Tree Pattern Matching
(CTPM) [27]. These methods leverage run-length encoding principles to repre-
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sent sampled patterns more effectively, improving performance in structured and
numerical data matching applications.

An additional advancement in sampled string matching is Character Con-
text Sampling (CCS), an extension of CDS that refines the sampling process by
incorporating the surrounding context of sampled characters [8]. Unlike CDS,
which records distances between selected pivot characters, CCS enhances sam-
pling by considering local character distributions and their relationships within
a defined window. By capturing richer contextual information, CCS reduces
false candidate occurrences while maintaining a compact index, making it par-
ticularly effective in cases where traditional sampling techniques struggle due
to redundancy or skewed distributions. Experimental results demonstrate that
CCS achieves superior search efficiency while preserving a significantly smaller
index size, further optimizing sampled string matching techniques.

Beyond pattern searching, sampled string matching techniques, such as Char-
acter Distance Sampling, have also proven useful for structural analysis of strings [23].
In particular, CDS has been adapted for computing string periodicity and short-
est covers, fundamental tasks in text processing. The sampled representation
enables significantly faster computations compared to classical methods, mak-
ing it an efficient approach for detecting regularities in large-scale datasets.

Recently, a new optimal representation for sampling has been introduced,
leveraging a Set Cover [37] approach to refine the selection of pivot charac-
ters and enhance the sampled text representation [7]. This advancement ad-
dresses key challenges, particularly optimizing the trade-off between index size
and search efficiency, while mitigating worst-case scenarios where patterns lack
pivot occurrences. This solution explores how this new model improves upon
existing sampling strategies, further solidifying the role of sampled string match-
ing as a space-efficient and computationally effective solution for large-scale text
searching.

While these algorithmic developments have primarily been driven by compu-
tational considerations, there is growing interest in understanding whether such
sampling strategies mirror processes in human cognition. In particular, research
in cognitive science has shown that human readers do not examine all characters
or words sequentially; rather, they employ selective attention and perceptual
skipping during reading, focusing only on salient textual regions [26]. This be-
havior can be understood as a biologically grounded sampling mechanism aimed
at optimizing recognition speed and accuracy under resource constraints.

The present work aims to bridge these domains by examining whether algo-
rithmically optimal sampling strategies—such as those used in character-distance-
based string matching—reflect or approximate the sampling behavior of human
readers. To this end, we conduct a comparative experimental study using con-
trolled visual search tasks with eye-tracking data, contrasting human scanpaths
with the sampling paths of string matching algorithms. The results offer new in-
sights into the alignment between artificial and natural strategies of information
processing and open the door to cognitively informed models for efficient string
analysis.
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2 Characters Distance Sampling in Brief

The Character Distance Sampling (CDS) technique builds a compact partial
index by recording distances between occurrences of selected pivot characters
[12]. Formally, given a text y of length n and a pattern x of length m over
an alphabet Σ, a sub-alphabet C ⊆ Σ is chosen as pivot set. If δ(i) denotes
the position of the i-th occurrence of any c ∈ C, the position-sampled version
of y is ẏ = ⟨δ(1), . . . , δ(nc)⟩, while the character-distance sampled version is
ȳ = ⟨δ(2)− δ(1), . . . , δ(nc)− δ(nc − 1)⟩.

Example 1. For y = “agaacgcagtata” and C = {a}, one obtains ẏ = ⟨1, 3, 4, 8, 11, 13⟩
and ȳ = ⟨2, 1, 4, 3, 2⟩.

To search a pattern x, its sampled version x̄ is computed. Every occurrence
of x in y corresponds to an occurrence of x̄ in ȳ, though the reverse requires
validation in O(m) time. In practice, ẏ is stored and ȳ computed on the fly,
yielding a partial index of size 32nc bits. This enables up to 40× speed-ups over
standard online algorithms at only ∼ 2% of the text size [12].

Beyond exact matching, CDS has been extended to approximate searches
(e.g., run-length text sampling for Order Preserving Pattern Matching [15,21]),
and offers flexibility in handling dynamic texts. Recent work further improves
space/time trade-offs via condensed alphabets [13] and fake distance represen-
tation [11].

While effective, CDS performance depends on pivot choice (in English, the
8th most frequent character is often optimal). For very short patterns with-
out pivots or small alphabets, classical search or alphabet condensation may be
preferable [13].

3 Human Sampling Behavior in Reading

Human reading is a complex cognitive process that relies on the coordinated
interplay of selective attention, efficient eye movements, and a predictive under-
standing of linguistic structure. Contrary to the intuitive idea of serial, exhaus-
tive character-by-character scanning, a substantial body of evidence from cogni-
tive psychology, neuroscience, and psycholinguistics shows that readers sample
text sparsely and strategically, employing a process known as perceptual skip-
ping [29,33]. This form of selective processing is foundational for understanding
how humans achieve rapid and efficient reading despite the brain’s limited per-
ceptual and attentional bandwidth.

In practice, reading is less about decoding every visual element and more
about selectively targeting high-value segments of text for detailed inspection,
while relying on peripheral cues, prior knowledge, and linguistic prediction to
fill in the gaps. These selective strategies provide an interesting analogue for
algorithm design: just as humans ignore low-informative regions of text, efficient
string matching algorithms can strategically skip positions that are unlikely to
yield matches.
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3.1 Fundamentals of Visual Attention in Reading

Visual perception during reading is governed by the mechanics of the human
visual system and the predictive nature of linguistic processing. The eyes exe-
cute rapid ballistic movements, called saccades, typically lasting 20–50 ms, in-
terspersed with fixations lasting approximately 200–250ms, during which most
information is extracted [29]. The perceptual span—the region from which useful
visual information can be acquired in a single fixation—extends asymmetrically
in left-to-right reading systems: about 3–4 characters to the left and 14–15 to
the right of fixation [30,31].

Only the foveal region (about 2 degrees of visual angle) supports high-
resolution processing, while the parafoveal and peripheral regions provide lower-
resolution, pre-attentive cues. These spatial constraints encourage readers to
make decisions about where to fixate next based on a trade-off between expected
informational value and the cost of moving the eyes. As a result, low-information
or predictable words are often skipped, leading to a naturally sparse and efficient
sampling trajectory.

3.2 Perceptual Skipping and Linguistic Predictability

Perceptual skipping is strongly modulated by linguistic predictability. High-
frequency words and syntactically predictable items are more likely to be skipped,
whereas rare or ambiguous words attract longer fixations and regressions [35,20].
The E-Z Reader model [32] proposes that lexical processing occurs in parallel
with saccadic programming: as soon as a word’s familiarity reaches a threshold,
the system can begin programming the next eye movement without completing
full lexical access, enabling the reader to leapfrog over predictable content.

From an information-theoretic perspective, this can be framed as an entropy-
reduction strategy: regions of low entropy (low informational gain) are bypassed,
while those of high entropy attract attention. This mirrors sampling in algo-
rithms, where the goal is to select positions with high discriminatory power to
minimize the number of comparisons needed.

3.3 Top-Down and Bottom-Up Integration

Eye guidance in reading results from the integration of top-down and bottom-up
processes [19]. Top-down mechanisms include syntactic expectations, semantic
context, and discourse-level goals, which allow readers to anticipate upcoming
material. Bottom-up mechanisms respond rapidly to local stimulus properties
such as word length, letter frequency, and visual contrast.

In algorithmic terms, top-down processes resemble pattern-based heuristics,
while bottom-up processes correspond to character-level frequency analysis. For
example, just as a sampling algorithm might prioritize low-frequency pivot char-
acters to maximize filtering efficiency, a reader may fixate on low-predictability
words to resolve uncertainty.
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3.4 Scanpath Regularities and Eye-Movement Corpus Studies

Large-scale corpora such as GECO and MECO provide detailed records of read-
ing behavior across languages and populations [36,4]. Statistical analyses reveal
several robust scanpath regularities:

– Fixations cluster near syntactic boundaries (e.g., noun phrases, clause breaks).
– Skipped words are typically short (< 5 characters), frequent, and syntacti-

cally predictable.
– Regression saccades (backward eye movements) are more common in regions

of syntactic or semantic difficulty.

These findings suggest an implicit strategy for prioritizing information, closely
paralleling index construction in sampled string matching, where structurally
salient characters are selected to optimize match verification.

3.5 Theoretical Models of Cognitive Economy

The concept of cognitive economy—maximizing information gained while mini-
mizing processing cost—is a core principle in models of visual attention. Accord-
ing to the principle of bounded rationality [34], readers use heuristics that yield
sufficiently accurate comprehension without incurring the cost of exhaustive pro-
cessing. Entropy-based models formalize this by linking fixation placement to
regions of maximum expected information gain, a principle directly analogous
to sampling algorithms that select comparison points of highest utility.

3.6 Neurocognitive Evidence and Brain-Inspired Models

Neuroimaging studies identify distributed cortical networks, including the supe-
rior parietal lobule, frontal eye fields, and occipito-temporal regions, as critical
to the control of visual attention during reading [28]. These areas interact with
the visual cortex to implement selective attention and gaze control, and their
activity supports predictive models of incoming input.

Computational neuroscience perspectives such as predictive coding [18] frame
the brain as a Bayesian inference machine, continually updating predictions
about the sensory environment and using discrepancies to guide further sam-
pling. This closely parallels adaptive string matching, where expectations about
the pattern structure guide pivot selection and skipping heuristics.

3.7 Cognitive Inspiration for Algorithmic Sampling

The parallels between human reading and algorithmic string matching suggest
that incorporating cognitive principles could yield algorithms that are both effi-
cient and robust. Core analogies include:

– Fixation as Pivot Selection: Just as readers choose fixation points that are
most informative for comprehension, algorithms can select pivot characters
that best discriminate between matches and mismatches.
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– Skipping as Window Shifting : Perceptual skipping is analogous to heuristic
jumps in algorithms like Boyer–Moore or CDS, where non-promising regions
are bypassed.

– Contextual Expectation as Preprocessing : Similar to how readers use parafoveal
and contextual cues to anticipate upcoming words, CCS algorithms incor-
porate surrounding character windows to refine candidate selection.

By embedding these principles explicitly, string matching algorithms may achieve
better trade-offs between accuracy, speed, and memory, especially in noisy, re-
dundant, or semi-structured data environments.

4 Experimental Results

We conducted a comprehensive evaluation of the cognitively inspired string
matching techniques proposed in this work. The primary focus is on search time
efficiency during candidate verification, while maintaining equivalent index sizes
across all methods to ensure fair comparisons.

4.1 Algorithms and Implementation

We implemented and benchmarked the state-of-the-art Character Distance Sam-
pling (CDS) algorithm, incorporating two different pivot selection strategies:

– Algorithmic baseline: the best-known pivot selection strategy described in [7].
– Cognitively inspired pivoting: pivots derived from human fixation data, com-

puted over large-scale eye-tracking corpora.

To integrate the cognitive dimension, we considered two complementary eye-
tracking resources:

– GECO [4], an English/Dutch bilingual reading corpus with over 500,000
recorded fixations, providing the core distribution of fixations across charac-
ters in words.

– CELER (Augmented GECO) [2], a large-scale dataset of L1/L2 English read-
ing including 365 participants, which we leverage to generalize and augment
GECO fixation patterns with broader demographic coverage.

4.2 Pivot Generation from Fixations

Let a word w consist of L characters, indexed from left to right as

w = (c1, c2, . . . , cL).

Eye-tracking corpora such as GECO and CELER provide fixation data, i.e.,
counts of how often participants’ gaze landed on or near each character position.
From these raw counts, we compute the empirical fixation probability distribu-
tion for word length L as follows.
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Let Ni denote the number of fixations observed on character ci, and N =∑L
j=1 Nj the total number of fixations for the word across participants. The

normalized fixation probability is then

fi =
Ni

N
, i = 1, . . . , L,

so that
∑L

i=1 fi = 1.

Pivot Expectation. The cognitively inspired pivot is defined as the expectation
of this discrete probability distribution:

µw = E[i] =
L∑

i=1

i · fi.

Since the pivot must correspond to a discrete character position, we map the
expectation to the nearest integer index:

PVL(w) = round(µw).

Thus, PVL(w) identifies the character in w most representative of human
visual attention according to fixation statistics.

Corpus Augmentation. In our study, GECO serves as the base corpus providing
fine-grained fixation probabilities. CELER is used as an augmentation source,
allowing us to smooth and generalize the empirical distribution by pooling across
a much larger participant base. Concretely, given two distributions f (GECO)

i and
f
(CELER)
i for a given word length L, we define the augmented fixation distribution

as a convex combination:

f
(Aug)
i = λ f

(GECO)
i + (1− λ) f

(CELER)
i ,

with λ ∈ [0, 1] controlling the relative weight. In our experiments we consid-
ered λ = 0.5 unless otherwise noted, yielding a balanced augmentation.

Example 2 (Pivot generation for “intense”). To illustrate the procedure, consider
the word w = intense of length L = 7, i.e. w = (c1, . . . , c7). From the GECO
corpus we observe fixation counts N = {4, 18, 46, 64, 46, 18, 4} with

∑7
i=1 Ni =

200, yielding normalized probabilities

fGECO
i =

Ni

200
, i = 1, . . . , 7.

The expectation of the distribution is

µGECO
w =

7∑
i=1

i · fGECO
i = 4.00,
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Fig. 3. Fixation probabilities fi for the word intense (L = 7). Bars show GECO-
derived probabilities; the dashed line marks the expectation µw = 4.00 and the red dot
highlights the discrete pivot PVL(w) = 4.

and the pivot position is obtained as PVLGECO(w) = round(µGECO
w ) = 4, cor-

responding to the central character “e”.
When augmenting GECO with CELER, we form the convex combination

f
(Aug)
i = λfGECO

i + (1− λ)fCELER
i , λ = 0.5,

which smooths the distribution across a larger participant base. The resulting
expectation is µ(Aug)

w = 3.98, leading to the same discrete pivot PVLAug(w) = 4.
Figure 3 illustrates this example: bars represent fixation probabilities fi,

the dashed line indicates the expectation µw, and the red point highlights the
selected pivot. Both GECO and the augmented distribution thus converge on
the central vowel as the cognitively inspired pivot, showing consistency across
corpora.

4.3 Datasets and Experimental Setup

All implementations were developed in C and evaluated using the Smart bench-
marking framework [6], compiled with gcc under the -O3 optimization flag to
enable aggressive optimizations such as loop unrolling and inlining. To ensure
that results reflect algorithmic efficiency rather than system-level artifacts, all
experiments were executed in a single-threaded environment with fixed random
seeds for reproducibility.

As input text we used a 100MB English segment from the Pizza & Chili
corpus [17], which has become a standard benchmark in the field due to its large
size and linguistic representativeness. The text was preprocessed by removing
control symbols and lowercasing all characters, producing a consistent stream
of tokens while maintaining natural word frequency distributions. Patterns were
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randomly extracted from this text with lengths m = 2p for p ∈ {4, 5, 6, 7},
corresponding to m ∈ {16, 32, 64, 128}. For each value of m, we selected 1000
distinct patterns via uniform random sampling over all substrings of length m,
a procedure designed to balance frequent and rare contexts while ensuring fair
comparisons across algorithms. All algorithms were then run on the same pattern
set, so that performance differences can be attributed solely to the pivot selection
strategy.

Each configuration was executed in 100 independent runs, and results were
averaged to obtain stable measurements. The evaluation criterion was strictly
search time efficiency, providing a direct comparison of candidate verification
costs across pivot selection strategies.

The experiments were carried out on a MacBook Pro equipped with a 2.7
GHz Intel Core i7 processor, four cores, 16 GB of 2133 MHz LPDDR3 RAM, a
256 KB L2 cache, and an 8 MB L3 cache. No background processes were allowed
during benchmarking, ensuring stable performance across all runs.

4.4 Performance Results

Figure 4 reports the runtime comparisons across different pattern lengths and
numbers of pivots. The CDS variant using the best-known algorithmic pivot
selection consistently achieved the fastest search times, demonstrating the ef-
ficiency of mathematically optimized strategies in a computational setting. In
contrast, cognitively inspired pivot choices—while grounded in human fixation
behavior—produced slower searches, suggesting that human reading patterns do
not directly translate into optimal algorithmic performance.

As visible across all configurations, the Human alignment entails a consistent
runtime penalty compared to the Best strategy. On average, the slowdown ranges
between 15% and 30%, with the largest deviations observed for intermediate
pattern lengths (m = 32 and m = 64), while the gap narrows to around 10–
15% for very short or very long patterns. This suggests that fixation-driven
pivots approximate but do not fully capture the optimal distribution required for
efficient sampling, thereby highlighting a trade-off between cognitive plausibility
and computational efficiency.

However, while the previous analysis focused on pivot generation at the
single-word level, practical deployment requires extending the procedure to en-
tire texts. To this end, we extract the pivot PVL(w) for each word w in the
corpus, thereby producing a sequence of pivot positions across the vocabulary.
We then compute the empirical frequency distribution of these pivots, identifying
which character indices occur most often as fixation-driven anchors. Finally, we
select the top-K most frequent pivots as the representative set for downstream
sampling. This procedure ensures that cognitively plausible pivot information is
condensed into a compact and reusable form, bridging the gap between word-
level fixation statistics and efficient large-scale text processing.

Although we also varied the regularization weight λ, the fixation maps pro-
duced by GECO and CELER remained largely similar under our protocol. A
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Fig. 4. Runtime comparison of the CDS algorithm under two pivot selection strategies:
the Best configuration (mathematically optimal pivot, as defined in [7]) and the Human
configuration (pivots derived from eye-tracking fixation data). The x-axis represents
the number of pivots used in the sampling process, while the y-axis reports the average
execution time in milliseconds.

more informative sensitivity analysis is likely to emerge on datasets with more
pronounced distributional differences (e.g., domain shift or altered noise profiles),
where any λ-dependent effects could be amplified.
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5 Conclusion

This work introduces a novel perspective on string matching by aligning algo-
rithmic sampling techniques with principles observed in human reading behav-
ior. Inspired by cognitive models of visual attention and perceptual skipping,
we explored the Character Distance Sampling via entropy-driven pivot selec-
tion, mirroring key facets of human information processing. Experimental results
demonstrated that CDS with the best-known pivot selection consistently outper-
formed cognitively-selected strategies, underscoring the potential of mathemat-
ically optimized approaches over human-inspired heuristics in certain computa-
tional contexts. Quantitatively, the Human configuration exhibited an average
slowdown of about 15–30% compared to the Best baseline, with the largest de-
viations observed for intermediate pattern lengths, while the gap narrowed to
10–15% for very short or very long patterns. This reflects how fixation-derived
pivots, concentrated around central characters, approximate but do not fully
match the distribution required for optimal sampling. These findings suggest
that while cognitive models can guide innovative algorithmic designs, rigorous
optimization remains critical for achieving peak performance. Future work will
investigate hybrid methods that blend cognitive plausibility with mathematical
efficiency, and extend the CDS framework to broader classes of pattern matching
problems.

Before closing, we highlight several limitations and scope restrictions. First,
the cognitive models of reading that inspired this work are typically formulated
at the word level, whereas our algorithms operate at the character level ; this
mismatch may reduce the fidelity of the analogy. Second, typographic factors
such as font, spacing, and layout, known to affect human fixation patterns, were
not modeled here, though they could meaningfully influence the distribution of
pivots in natural reading. Third, the behavioral data underpinning our discussion
stem from corpora and experimental settings that differ from the text domains
used in our computational evaluation, which may limit direct comparability.
Finally, one of the key related works we reference (i.e. [7]) is a preprint, and thus
its findings should be interpreted with caution until they undergo peer review.
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