
Representation and Invariance in Reinforcement
Learning

Samuel Allen Alexander1[0000−0002−7930−110X]

Arthur Paul Pedersen2[0000−0002−2164−6404]

1Independent Researcher, samuelallenalexander@gmail.com
2The City University of New York

Abstract. Researchers have formalized reinforcement learning (RL) in
different ways. If an agent in one RL framework is to run within an-
other RL framework’s environments, the agent must first be converted, or
mapped, into that other framework. In this paper, we lay foundations for
studying relative-intelligence-preserving mappability between RL frame-
works. We introduce a criterion which is sufficient for relative intelligence
to be preserved according to one particular method of measuring intelli-
gence. We show that this criterion cannot be met when mapping between
certain deterministic and stochastic RL frameworks, suggesting inherent
fundamental differences between these different versions of RL.

1 Introduction

If we changed the rules, would the wise become fools? In reinforcement learning
(RL), agents and environments interact. The agent’s objective is to learn to act
in its environment in order to maximize its rewards. When an agent interacts
with an environment, the agent and the environment take turns. On the agent’s
turn, the agent chooses an action (or a probability distribution over a set of
actions, according to which an action is randomly selected). The action so cho-
sen is thereupon transmitted to agent and environment. On the environment’s
turn, the environment chooses a percept to send to the agent in response (or a
probability distribution over a set of percepts, according to which a percept is
randomly selected). The percept so chosen is likewise transmitted to agent and
environment. Each percept includes a numerical reward and an observation.

This is all simple enough, but there are many different ways to formally rep-
resent RL. These different representations can be organized according to answers
to key questions, such as who goes first, what actions are permitted, what obser-
vations are allowed, and how numerical rewards are issued. Implicit in treatments
of RL is that answers to these questions are inconsequential. The problem ad-
dressed in this paper is whether this is really so. If answers to such questions are
inconsequential to problems for reinforcement learning, then evaluation of agent
performance — measures of their relative intelligence — would be expected to
be invariant with respect to transformations between different RL frameworks.



2 S. A. Alexander, A. P. Pedersen

The present paper develops techniques for understanding the extent to which
scales for measuring agent intelligence are invariant to different RL representa-
tions. To be clear, this is a very complicated subject, and the present paper
should be considered to be an initial step in a thousand-mile journey. Even the
problem of merely measuring RL agent intelligence in some fixed RL framework
is quite difficult. How much more difficult is the problem of testing preserva-
tion of relative intelligence when agents are converted from one RL framework
to another? This is important because researchers have been treating RL as if
the details are irrelevant, speaking of RL as if there is some core approach in
common that everyone agrees on, whereas in reality this is far from the case.

As a simple illustrative example, if someone proposed an RL framework where
only the reward 0 were allowed, clearly that framework would be weaker than
the frameworks used in practice. Yet it is not so clear whether the same would
hold if the proposed RL framework allowed only the rewards {0, 1}. What if
it allowed only the rewards {−1, 0, 1}? What if it allowed only natural number
rewards? What if it allowed only rational number rewards? What if it allowed
arbitrary real-valued rewards? Would all these frameworks be equivalent, even
though none are equivalent to the 0-only-reward framework? What does this
question even mean, and how would one even begin to answer it?

The above questions, and others like them, are the high-level considerations
which motivated this paper. But we found the problem so overwhelmingly com-
plicated that, after exploring the topic for years, we finally decided to limit this
initial paper to a modest first stab at it. In this paper we will consider only four
specific concrete RL frameworks. These four frameworks are mutually identical
except for two parameters: whether agents are deterministic or stochastic; and
whether environments are deterministic or stochastic. The question of which
of these frameworks are equivalent to which, is already important, because all
four types of RL are routinely used in practice (often with deterministic agents
or environments masquerading as stochastic through the use of pseudo-random
number generators), whereas a majority of the theoretical literature assumes
both agent and environment are stochastic. It would therefore be scandalous if
these four frameworks were not all equivalent. As a matter of fact, our analysis
suggests they might be significantly non-equivalent.

We will introduce a notion of transformation from one RL framework to
another, and we will show that, if relative intelligence is compared as suggested
in [1], then such transformations preserve relative intelligence of agents. Thus, at
least in some sense, the existence of such a transformation is a sufficient condition
for one RL framework to be reducible to another—and if two RL frameworks
are mutually reducible to each other, they are in that sense equivalent to each
other.

2 Preliminaries

The following definition attempts to explicitly recognise a decision implicit in
much of the RL literature.
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Definition 1. By a reinforcement learning framework (or RL frame-
work) we mean a triple (A,E, V ) where:

1. A is a set whose members are called agents;
2. E is a set whose members are called environments;
3. V : A×E → R is a function assigning to every agent π ∈ A and environment

µ ∈ E a total expected reward V π
µ ∈ R representing how well π performs

in µ.

While Definition 1 is not intended to be as general as possible, it encompasses
standard variants of RL1.

What does it mean for one RL framework to be reducible to another? Imag-
ine you have access to agents which a laboratory designed for RL framework F ,
but the environments you are interested in were designed for RL framework F ′.
The agents designed for framework F can only run in environments designed
for framework F , so you cannot directly use them. You must somehow convert
them to run in framework F ′. So for every agent π designed for framework
F , you need to transform it into an agent π∗ designed for framework F ′. This
transformation should be faithful in some sense, but what does that mean? This
question is vague, but we can at least say one thing: the transformation should
preserve relative performance. If π is better than ρ in framework F , then π∗

should be better than ρ∗ in framework F ′. But π∗ and ρ∗ perform in framework
F ′ environments, whereas π and ρ perform in framework F environments. And
in this thought experiment, the environments you care about are in framework
F ′. So for every such environment µ in framework F ′, the relative performance
of π∗ and ρ∗ in µ should be compared with the relative performance of π and ρ,
not in µ itself, as they are incompatible with µ, but rather with some appropri-
ate transformation µ∗ of µ, where µ∗ is an environment in framework F . This
motivates the following definition.

Definition 2. Suppose F = (A,E, V ) and F = (A,E, V ) are RL frameworks.
A transformation from F to F is a pair (•∗ : A → A, •∗ : E → E) of
functions such that:

1. (Faithfulness) For all π, ρ ∈ A and µ ∈ E, V
π∗

µ < V
ρ∗

µ iff V π
µ∗

< V ρ
µ∗
.

2. (Nontriviality 1) There exist π, ρ ∈ A, µ ∈ E such that V
π∗

µ < V
ρ∗

µ .

1 Subsumed variants include, for example, those in which (i) agents are deterministic
while environments need not be (as in [15] or [22]), (ii) neither agent nor environment
need be deterministic (as in [17]), (iii) rewards are multiplied by discount factors,
as in [23], (iv) each percept also includes a true-or-false flag indicating whether or
not the percept signals the start of a new “episode” (as in [11] or [23], (v) where
rewards are restricted, e.g. to Q or (as in [17]) some finite subset of Q, (vi) where
available actions vary from turn to turn (as in [23] or [13]), (vii) where available
actions vary from environment to environment (as in [11]), (viii) where environments
are Markov decision processes (as in most of [23]), (ix) where the environment can
secretly simulate the agent [3, 10, 7], (x) where, environments and/or agents must be
computable.
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3. (Nontriviality 2) There exist π ∈ A, µ, ν ∈ E such that V
π∗

µ < V
π∗

ν .

Example 1. Suppose F and F are two RL frameworks identical in every way
except that F permits rewards from Z but F only permits rewards from 2Z,
the set of even integers. We believe anyone familiar with RL would informally
consider these two RL frameworks to be equivalent. The obvious transformation
from F to F is the pair (•∗, •∗) defined as follows. For any agent π of F ,
let π∗ be the agent of F which results from wrapping π with an intermediary
function that divides all rewards by 2. And for any environment µ of F , let
µ∗ be the environment of F which takes an input, multiplies all the rewards in
that input by 2, passes the mutated input to µ, and returns µ’s output but with
reward divided by 2. Similarly, a transformation from F to F can be obtained
by replacing 2 with 1

2 above.

Lemma 1 (Composability).

Suppose F ,F ,F are RL frameworks. If there is a transformation from F

to F and a transformation from F to F , then there is a transformation from

F to F .

Proof. Write F = (A,E, V ), F = (A,E, V ), F = (A,E, V ). Assume (•∗, •∗)
is a transformation from F to F , so •∗ : A → A and •∗ : E → E. Assume

(•†, •†) is a transformation from F to F , so •† : A → A and •† : E → E.

Define •‡ : A → A by π‡ = (π∗)† and define •‡ : E → E by µ‡ = (µ†)∗. It is

straightforward to show that (•‡, •‡) is a transformation from F to F .

Lemma 2. (Self-reducibility) Suppose F is an RL framework. If F is nontriv-
ial, in the sense that F contains agents π, ρ, σ and environments µ, ν, τ such
that V π

µ < V ρ
µ and V σ

ν < V σ
τ , then there is a translation from F to itself.

Proof. Write F = (A,E, V ). It is straightforward to show that (•∗, •∗) is a
translation from F to F where •∗ : A → A is the identify function on A and
•∗ : E → E is the identity function on E.

3 Comparing intelligence using ultrafilters and preserving
relative intelligence

The question of how to measure intelligence of RL agents is nontrivial, even in a
given fixed RL framework. One proposal is the Legg-Hutter intelligence measure
[17], but that proposed measure involves infinite sums and the noncomputable
Kolmogorov complexity function, making the proposal mathematically unwieldy;
we have not been able to prove intelligence preservation results in terms of
Legg-Hutter intelligence. Instead, we will compare intelligence using an approach
which is mathematically more tractable, originally introduced by [1].

The idea is that in order to compare two RL agents π and ρ, to determine
which one is more intelligent (or whether they are equally intelligent), we can
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consider these three possibilities to be candidates in an election, where environ-
ments are voters. For any particular environment µ, if V π

µ > V ρ
µ , then µ votes

that π is more intelligent than ρ. If V π
µ < V ρ

µ , then µ votes that π is less intelli-
gent than ρ. If V π

µ = V ρ
µ , then µ votes that π and ρ are equally intelligent. How

can we decide the winner of such an election? It turns out there is an elegant
way to do this using machinery from mathematical logic known as ultrafilters
(we will motivate ultrafilters below, assuming no prior knowledge thereof).

3.1 Introduction to ultrafilters

We give an introduction to ultrafilters in terms of elections (they were previously
introduced this way in [5] and in [4]). In this subsection, we fix a set E of
environments. If the environments in E vote in an election between finitely many
candidates, how can we determine which candidate wins?

Say that a subset X ⊆ E is a majority if electoral victory would already be
guaranteed given only the votes ofX. Can we think of any axioms that majorities
should satisfy?

Here are three fairly obvious axioms for majorities:

– (Properness) ∅ is not a majority (if no-one votes for you, you lose).
– (Monotonicity) If X is a majority and Y ⊇ X then Y is a majority (addi-

tional votes should do no harm).
– (Maximality) If X is not a majority, then its complement Xc is a majority

(in a two-candidate election, if one candidate does not win, then the other
candidate wins).

A fourth axiom is much less obvious, and in fact is highly counter-intuitive if
we rely on our intuition about finite-voter elections. We would probably never
think of this next axiom if we were only thinking in terms of elections, but
recall that we are particularly interested in a special type of election, namely,
an intelligence-comparison election. We would very much like for the resulting
agent comparator to be transitive. In other words, consider RL agents π, ρ, σ.
If the voters vote that π is more intelligent than ρ, and also they vote that ρ
is more intelligent than σ, then we would very much desire that they should
vote that π is more intelligent than σ. To say the voters vote π more intelligent
than ρ is to say that some majority X votes as much, and to say that they
vote ρ more intelligent than σ is to say that some majority Y votes as much.
Assuming individual voters are consistent, it would follow that X ∩ Y vote π
more intelligent than σ. Thus, in order to achieve the desired transitivity, we
enforce the following counter-intuitive axiom.

– (∩-closure) If X and Y are majorities, then X ∩ Y is a majority.

It turns out that through these electoral considerations we have already ar-
rived at the mathematically sophisticated notion of the ultrafilter.

Definition 3. Suppose E is a set. By an ultrafilter on E we mean a set U
of subsets of E (intuitively thought of as majorities) which satisfy Properness,
Monotonicity, Maximality and ∩-closure.
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Thus, if the environments in the set E are going to vote in an election with
finitely many candidates, one way to determine the winner is to fix an ultrafilter
U on E and declare that for each candidate c, if {µ ∈ E : µ votes for c} ∈ U ,
then c wins. The ∩-closure and Properness axioms ensure at most one candidate
can win. The Maximality axiom (possibly iterated if there are > 2 candidates)
ensures at least one candidate must win. Economists have shown [16] that if we
impose certain requirements on election-decision methods, then conversely, every
election-decision method satisfying those requirements is one of these ultrafilter-
based decision methods2.

3.2 Preservation of relative intelligence by transformation of RL
frameworks

The previous subsection motivates the following notion of relative intelligence.

Definition 4. Suppose F = (A,E, V ) is an RL framework. Let U be an ultra-
filter on E. We define the intelligence comparator ≤U , a binary relation on A,
as follows. For all π, ρ ∈ A, we declare π ≤U ρ iff {µ ∈ E : V π

µ ≤ V ρ
µ } ∈ U .

In plain English: π ≤U ρ if the environments vote that ρ performs at least as
well as π (when we use U to decide the outcome of the election once the votes
are cast). We leave the proof of the following lemma as an exercise to the reader
(using the ultrafilter axioms, Definition 3).

Lemma 3. Suppose F = (A,E, V ) is an RL framework and U is an ultrafilter
on E.

1. (Reflexivity) For every π ∈ A, π ≤U π.
2. (Transitivity) For all π, ρ, σ ∈ A, if π ≤U ρ and ρ ≤U σ, then π ≤U σ.

Since we are interested in preservation (or lack thereof) of relative intelligence
by a transformation from one RL framework to another, we would like a way to
transform the above relative intelligence notion between frameworks.

Definition 5. (Transformation of an ultrafilter) Suppose F = (A,E, V ) and
F = (A,E, V ) are RL frameworks, (π 7→ π∗ : A → A,µ 7→ µ∗ : E → E) is a
transformation from F to F , and U is an ultrafilter on E. For each Y ⊆ E, let
Y∗ = {µ∗ : µ ∈ Y } ⊆ E. We define

U∗ = {X ⊆ E : X ⊇ Y∗ for some Y ∈ U}.
2 The requirements in question are exactly the desiderata from Arrow’s Impossibility
Theorem, minus non-dictatorialness. Non-dictatorial decision-methods correspond
exactly with so-called free ultrafilters: an ultrafilter U on E is free if it has the
property that there does not exist any µ ∈ E such that {µ} ∈ U . Assuming E is
infinite, it is known that free ultrafilters on E exist. This does not contradict Arrow’s
Impossibility Theorem, because Arrow’s Impossibility Theorem requires that the set
of voters is finite.
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Lemma 4. For all F , F , (•∗, •∗), U as in Definition 5, U∗ is an ultrafilter on
E.

Proof. Straightforward.

The following is a relative intelligence preservation theorem for RL framework
transformations, in the following sense. It says that if we have a transformation
from a source framework to a destination framework, and if we compare relative
intelligence in the destination framework using the electoral method (deciding
elections with some ultrafilter U on the destination framework’s environments),
then those comparisons are preserved by the transformation (if we decide elec-
tions with U∗ on the source framework’s environments).

Theorem 1. (Preservation Theorem) Suppose F = (A,E, V ), F = (A,E, V )
are RL frameworks and (•∗ : A → A, •∗ : E → E) is a transformation from F
to F . For any ultrafilter U on E, the transformation (•∗, •∗) preserves relative
intelligence in the following sense: for all π, ρ ∈ A, we have π ≤U∗ ρ iff π∗ ≤U ρ∗.

Proof. (⇐) Assume π∗ ≤U ρ∗. By definition, this means Y ∈ U , where Y = {µ ∈
E : V

π∗

µ ≤ V
ρ∗

µ }. Let X = {ν ∈ E : V π
ν ≤ V ρ

ν }, we must show X ∈ U∗. By the
Monotonicity property of ultrafilters, it suffices to show some subset of X is in
U∗. Since Y ∈ U , it follows that Y∗ ∈ U∗; we will show Y∗ ⊆ X. Compute:

Y∗ = {µ∗ : µ ∈ Y } (Def. of Y∗)

= {ν ∈ E : ν = µ∗ for some µ ∈ Y } (Rewriting)

= {ν ∈ E : ν = µ∗ for some µ ∈ E with V
π∗

µ ≤ V
ρ∗

µ } (Def. of Y )

= {ν ∈ E : ν = µ∗ for some µ ∈ E with V π
µ∗

≤ V ρ
µ∗
} (Def. 2 part 1)

⊆ {ν ∈ E : V π
ν ≤ V ρ

ν }
= X. (Def. of X)

(⇒) By rewriting our proof of (⇐) with ≤ changed to ≰ throughout, we get
a proof that if π∗ ≰U ρ∗ then π ≰U∗ ρ.

Remark 1. Readers interested in measurement theory will be interested in the
following variation. Suppose F = (A,E, V ), F = (A,E, V ) are RL frameworks
and (•∗ : A → A, •∗ : E → E) is a transformation from F to F . Call (•∗, •∗) a
scaling transformation if it satisfies the following additional property:

– For all π, ρ ∈ A, for all µ ∈ E, for all k ∈ R, V π∗

µ < kV
ρ∗

µ iff V π
µ∗

< kV ρ
µ∗
.

Fix an ultrafilter U on E. For all π, ρ ∈ A and k ∈ R, define:

– π∗ ≤U kρ∗ iff {µ ∈ E : V
π∗

µ ≤ kV
ρ∗

µ } ∈ U ;
– π ≤U∗ kρ iff {ν ∈ E : V π

ν ≤ kV ρ
ν } ∈ U∗.

Then by almost identical reasoning to the proof of Theorem 1, one can show that
for any scaling transformation (•∗, •∗), π ≤U∗ kρ iff π∗ ≤U kρ∗. Thus, scaling
transformations preserve relative intelligence even more strongly: they preserve
real ratio relations such as “π is at least twice as intelligent as ρ” or “π is not
at least half as intelligent as ρ”.
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4 Concrete results

In this section we will introduce four specific concrete RL frameworks. This will
involve fixing action-sets and percept-sets, defining histories, and defining specific
performance measures V π

µ . Bear in mind that this infrastructure is specific to
the four specific concrete RL frameworks.

Fix nonempty finite sets A, E . Elements of A are actions and elements of
E are percepts. We assume A ∩ E = ∅. We typically write a member of A as x
and a member E as y. Assume a function R : E → Z assigning3 to every percept
x ∈ E an integer-valued reward. We assume the range of R includes 0 and 1.

The fact that R(x) is integer-valued is critical for some of the proofs below.
We do not currently know whether the theorems in question would remain true
if R(x) were allowed to be an arbitrary element of Q, which would be more rele-
vant in practice: rewards in reinforcement learning are not usually restricted to
be integer-valued (though some important environments do have integer-valued
rewards, for example environments where the agent gets reward +1 for winning
a game, −1 for losing a game, and 0 for any other move).

We define histories inductively so that: (i) The empty sequence is a history;
(ii) for any percept x, ⟨x⟩ is a history; (iii) for any nonempty history h ending
with a percept, for any action y, hy is a history (where hy is the result of
appending y to h); (iv) for any nonempty history h ending with an action, for
any percept x, hx is a history (where hx is the result of appending x to h). In
plain English: a history is a finite sequence starting with a percept, followed by
an action, followed by a percent, followed by an action, and so on for some finite
number of steps (the empty sequence is also considered a history). An agent
history is a history which ends with a percept (so named because these are
the histories intended to be seen by the agent). An environment history is a
history which is either empty or ends with an action. We write HA for the set
of all agent histories, and we write HE for the set of all environment histories.

Lemma 5. A history is an agent history iff it has odd length; it is an environ-
ment history iff it has even length.

Proof. By induction.

For nonempty finite set X, let ∆(X) be the set of Q-valued probability dis-
tributions on X.

Definition 6 (Deterministic and Stochastic Agents and Environments).
Define the following sets:

Adet = AHA , the set of all functions π : HA → A (call these functions
deterministic agents).

3 By abstracting the function R out, rather than requiring that percepts be
observation-reward pairs, we simplify certain technical details. A similar device is
used in [12]. See also [18] where two different versions of RL are implemented, one
with observation-reward pairs, one with reward-observation pairs, in order to test
whether some empirical results depend on the ordering of the pairs.
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Edet = EHE , the set of all functions µ : HE → E (call these functions
deterministic environments).
Arnd = ∆(A)HA , the set of all functions π : HA → ∆(A) (call these functions
stochastic agents).
Ernd = ∆(E)HE , the set of all functions µ : HE → ∆(E) (call these functions
stochastic environments).

An environment provides a way to obtain a percept from an environment
history. Appending that percept to that history yields an agent history. An agent
then provides a way to obtain an action from an agent history, and appending
that action to that agent history gives us another environment history, and the
process can be repeated forever.

Definition 7 (Expected total reward). Let π ∈ Adet∪Arnd, µ ∈ Edet∪Ernd.

1. For every n ∈ N, let V π
µ,n be the expected value of the total reward-sum

R(x1) + · · ·+R(xn) if the history x1y1 . . . xnyn is generated as follows:

– If µ ∈ Edet then x1 = µ(⟨⟩). If µ ∈ Ernd then x1 is randomly chosen
from E based on the probability distribution µ(⟨⟩) ∈ ∆(E).

– If π ∈ Adet then y1 = π(⟨x1⟩). If π ∈ Arnd then y1 is randomly chosen
from A based on the probability distribution π(⟨x1⟩) ∈ ∆(A).

– For 1 < i < n, if µ ∈ Edet then xi+1 = µ(x1y1 . . . xiyi); if µ ∈ Ernd then
xi+1 is randomly chosen from E based on the probability distribution
µ(x1y1 . . . xiyi) ∈ ∆(E).

– For 1 < i ≤ n, if π ∈ Adet then yi = π(x1y1 . . . xi−1yi−1xi); if π ∈ Arnd

then yi is randomly chosen from A based on the probability distribution
π(x1y1 . . . xi−1yi−1xi).

2. Let V π
µ = limn→∞ V π

µ,n, provided the limit converges to a real number. If not,
then V π

µ is undefined.

Since the above V π
µ does not always converge, it is not directly suitable for

Definition 1. To get around this, we restrict our attention to environments µ for
which V π

µ always converges (this trick was introduced in [6]).

Definition 8 (Well-behaved environments).

1. We say µ ∈ Edet∪Ernd is well-behaved if it has the following property: for
every π ∈ Adet ∪Arnd, V π

µ exists.

2. Let W det denote the set of well-behaved deterministic environments and
W rnd the set of well-behaved stochastic environments.

A word on notation might be helpful. In the notation V π
µ , the superscript on

V is used for the agent, and the subscript on V is used for the environment. In
the same way, in the following definition, the superscript on F refers to agents,
and the subscript on F refers to environments.

Definition 9 (Four Specific RL Frameworks).
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– The standard RL framework with deterministic agents and envi-
ronments is the RL framework F det

det = (Adet,W det, V ).
– The standard RL framework with stochastic agents and determin-

istic environments is the RL framework F rnd
det = (Arnd,W det, V ).

– The standard RL framework with deterministic agents and stochas-
tic environments is the RL framework F det

rnd = (Adet,W rnd, V ).
– The standard RL framework with stochastic agents and environ-

ments is the RL framework F rnd
rnd = (Arnd,W rnd, V ).

The following theorem is the main result of this paper. For the four concrete
frameworks of Definition 9, we answer the 4·(4−1) = 12 transformation-existence
questions.

Theorem 2. For all G ,H ∈ {F rnd
rnd ,F

rnd
det ,F

det
rnd ,F

det
det } with G ̸= H , there is

a transformation from G to H iff G = F rnd
det or H = F det

rnd . In other words:
there is a transformation from G to H iff there is an arrow from G to H in
Figure 1.

Fig. 1. Existence of transformations between four concrete RL frameworks.

We will prove Theorem 2 by a series of prelimary results.

4.1 Proof of Theorem 2

First, we will prove the positive parts of Theorem 2. We begin by defining em-
beddings of deterministic agents (resp. environments) among stochastic agents
(resp. environments).

Lemma 6. 1. There exists a function •̂ : Adet → Arnd such that for all µ ∈
W det ∪W rnd, V π

µ = V π̂
µ .

2. There exists a function •̂ : W det → W rnd such that for all π ∈ Adet ∪ Arnd,
V π
µ = V π

µ̂ .
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Proof.
(1) Define π̂ : HA → ∆(A) by

π̂(y|h) =

{
1 if y = π(h),

0 otherwise.

For any µ ∈ W det ∪W rnd, by induction on n, it is easy to show that for each n,
V π̂
µ,n = V π

µ,n. Taking the limit as n → ∞, we are done.
(2) Similar to (1), defining µ̂ : HE → ∆(E) by

µ̂(x|h) =

{
1 if x = µ(h),

0 otherwise.

Proposition 1 (Positive parts of Theorem 2). For every arrow in Figure
1 from a source RL framework to a destination RL framework, there is a trans-
formation from said source framework to said destination framework.

Proof. (From F det
det to F rnd

det ) Define •∗ : Adet → Arnd by π∗ = π̂ and define
•∗ : W det → W det by µ∗ = µ, where π̂ is as in Lemma 6. It is straightforward
to show (•∗, •∗) is a transformation from F det

det to F rnd
det (for Nontriviality 1 and

Nontriviality 2 (Definition 2), use the fact the range of R includes 0 and 1).
(From F det

rnd to F det
det ) Define •∗ : Adet → Adet by π∗ = π and define •∗ : W rnd →

Wdet by µ∗ = µ̂, where µ̂ is as in Lemma 6. It is straightforward to show (•∗, •∗)
is a transformation from F det

rnd to F det
det .

The other three arrows are similar.

To prove the negative parts of Theorem 2, we will need to take mixtures of
agents and environments.

Lemma 7 (Mixing Lemma).

1. Given weights w1, . . . , wn ∈ (0, 1) ∩ Q, with w1 + · · · + wn = 1, and agents
π1, . . . , πn ∈ Arnd, there exists π ∈ Arnd such that for every µ ∈ W det∪W rnd,
V π
µ = w1V

π1
µ + · · ·+ wnV

πn
µ .

2. Given weights w1, . . . , wn ∈ (0, 1) ∩ Q, with w1 + · · · + wn = 1, and en-
vironments µ1, . . . , µn ∈ W rnd, there exists µ ∈ W rnd such that for all
π ∈ Adet ∪Arnd, V π

µ = w1V
π
µ1

+ · · ·+ wnV
π
µn

.

Proof. (1) For every history h and every ρ ∈ Arnd, let P ρ(h) be the probability
that h would be an initial segment of the percept-action sequence that would
be randomly generated if ρ interacted with some environment, subject to the
condition that that environment initially outputs the percepts in h. As in [8],
define π : HA → ∆(A) by

π(y|h) = w1P
π1(hy) + · · ·+ wnP

πn(hy)

w1Pπ1(h) + · · ·+ wnPπn(h)
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provided the denominator is ̸= 0, or π(y|h) = 1/|A| otherwise. By an inductive
argument on k, the expected total reward V π

µ,k which π would obtain after k steps
interacting with any well-behaved environment µ equals w1V

π1

µ,k + · · ·+ wnV
πn

µ,k,
the weighted average of the expected rewards π1, . . . , πn would obtain after k
steps interacting with µ. Taking the limit as k → ∞, we are done. For details,
see [8].

(2) Similar to (1), with µ : HE → ∆(E) defined as follows. For every history
h and every ν ∈ W rnd, let Pν(h) be the probability that h would be an initial
segment of the percept-action sequence that would be randomly generated if ν
interacted with some agent, subject to the condition that that agent initially
outputs the actions in h. Define

µ(x|h) = w1Pµ1
(hx) + · · ·+ wnPµn

(hx)

w1Pµ1(h) + · · ·+ wnPµn(h)

provided the denominator is ̸= 0, or µ(x|h) = 1/|E| otherwise. For details, adapt
the proof of Lemma 48 (part 4) of [8] to a finite vector of weights (the “strongly
well-behaved” hypothesis of said lemma can be replaced by “well-behaved” be-
cause of the finiteness of the vector of weights).

Theorem 3. There does not exist a transformation from F det
det to F rnd

rnd .

Proof. For sake of contradiction, assume (•∗ : Adet → Arnd, •∗ : W rnd → W det)
is a transformation. By Nontriviality 2 (Definition 2), pick π ∈ Adet and µ, ν ∈
W rnd such that V π∗

µ < V π∗

ν . For every α ∈ (0, 1) ∩Q, using Theorem 7 (part 2)
(with n = 2, w1 = α, w2 = 1−α), let σα be the result of mixing µ and ν, giving α
weight to µ and 1−α weight to ν, so V π∗

σα
= αV π∗

µ +(1−α)V π∗

ν . Thus for all such
rational α < β, we have V π

(σα)∗
< V π

(σβ)∗
. Choose rationals ℓ1 < ℓ2 < ℓ3 < · · · in

(0, 1
2 ) ∩ Q and choose rational r ∈ ( 12 , 1) ∩ Q, so r > ℓi for every i. For each i,

let τi = σℓi . We have V π
(τ1)∗

< V π
(τ2)∗

< · · · , and yet V π
(σr)∗

> V π
(τi)∗

for every i.
This is impossible since V π

(σr)∗
∈ Z and each V π

(τi)∗
∈ Z: there does not exist an

infinite strictly ascending sequence of integers and another integer bigger than
them all.

Theorem 4. There does not exist a transformation from F rnd
rnd to F det

det .

Proof. For sake of contradiction, assume (•∗ : Arnd → Adet, •∗ : W det → W rnd)
is a transformation. By Nontriviality 1 (Definition 2), pick π, ρ ∈ Arnd and
µ ∈ W det such that V π∗

µ < V ρ∗

µ , so V π
µ∗

< V ρ
µ∗
. Using Theorem 7 (part 1) (with

n = 2, w1 = α, w2 = 1−α), for every α ∈ (0, 1)∩Q, let σα be the result of mixing
π and ρ, giving α weight to π and 1−α weight to ρ. So V σα

µ∗
= αV π

µ∗
+(1−α)V ρ

µ∗
.

Thus for all such rationals α < β, we have V σα
µ∗

< V
σβ
µ∗ , so V

σ∗
α

µ < V
σ∗
β

µ . Choose

ℓ1 < ℓ2 < · · · in (0, 1
2 ) ∩ Q and r ∈ ( 12 , 1) ∩ Q, so r > ℓi for each i. For every i,

let τi = σℓi . We have V
τ∗
1

µ < V
τ∗
2

µ < · · · , and yet V
σ∗
r

µ > V
τ∗
i

µ for each i. This is
impossible for the same reason as in Theorem 3.
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Theorem 5. (Negative parts of Theorem 2) For all distinct RL frameworks G
and H in Figure 1, if the figure does not include an arrow from G to H , then
there is no transformation from G to H .

Proof. (From F det
det to F rnd

rnd and from F rnd
rnd to F det

det ) By Theorems 3 and 4.
(From F rnd

det to F det
det ) By Theorem 1, there is a transformation from F rnd

rnd to
F rnd

det . If there were a transformation from F rnd
det to F det

det , then by composability
(Lemma 1), there would be a transformation from F rnd

rnd to F det
det . This would

violate the previous case.
(From F det

det to F det
rnd) By Theorem 1, there is a transformation from F det

rnd to
F rnd

rnd . If there were a transformation from F det
det to F det

rnd , then by composability
(Lemma 1), there would be a transformation from F det

det to F rnd
rnd . This would

violate the first case.
The remaining three negative results are proved similarly.

Combining Proposition 1 and Theorem 5, we have proved Theorem 2.
Theorem 2 suggests that, at least if rewards are limited to integers, the nature

of reinforcement learning may be inherently different depending whether agents
be deterministic or stochastic, and whether environments be deterministic or
stochastic. We do not currently know whether Theorem 2 would remain true if
arbitrary rational-number rewards were allowed. For lack of any better evidence,
though, the analysis here at least urges that researchers should exercise caution
before speaking about RL as if these decisions don’t matter.

The positive parts of Theorem 2 can be slightly strengthened: it can be
shown that the transformations in the proof of Theorem 1 are in fact scaling
transformations, in the sense of Remark 1.

5 Summary and conclusion

This paper is intended as a tentative initial step toward the difficult problem of
comparing different reinforcement learning frameworks in general. Different au-
thors all have the same high-level intuition about RL, but the formal details vary
from author to author: which formalizations of RL are equivalent to each other,
and which formalizations are fundamentally different? As an extreme example, a
version of RL where rewards are required to always be 0, is clearly weaker than
all ordinary versions of RL. But what does that formally even mean?

We introduced (Definition 2) the notion of a transformation from one RL
framework to another. In Section 3 we recalled from [1] an elegant method of
comparing RL agent intelligence based on electoral considerations. The high-
level idea is to consider RL environments to be voters who vote (based on the
performance of agents in those environments) to decide whether one agent is
more intelligent than another (or whether both are equally intelligent). These
intelligence-competition elections have to be decided somehow, and economists in
the 1970s showed that the election decision procedures satisfying certain desider-
ata correspond exactly to so-called ultrafilters, which we recalled for the reader
who might not be familiar with them (Subsection 3.1). We showed (Theorem 1)
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that if a transformation exists from a source RL framework to a destination RL
framework, then this transformation can be used to transform ultrafilter-based
intelligence comparators in the destination framework into ultrafilter-based in-
telligence comparators in the source framework, in such a way as to preserve the
relative intelligence of agents.

The reason for introducing transformations is that we intend them to be a
proxy for the intuitive notion of one RL framework being reducible to another.
Given two RL frameworks, if each is reducible to the other in this sense, then that
serves as a proxy for the intuitive notion of the two frameworks being equivalent.

We introduce (Definition 9) four concrete RL frameworks, differing from each
other only in terms of two binary parameters: (i) whether agents are deterministic
or stochastic, and (ii) whether environments are deterministic or stochastic. This
gives rise to 4 · 3 = 12 questions about existence of transformations. We answer
all twelve questions, five positively and seven negatively (Theorem 2); no two of
the four frameworks are equivalent in the sense of having transformations going
in both directions. This is evidence suggesting that all four frameworks might
be mutually non-equivalent.

Our high-level hope is that these results will encourage authors to be more
specific, when talking about reinforcement learning, about which version of RL
they mean. For example, when Silver et al suggest [22] that RL will lead to
AGI, which version of RL do they mean? (Silver et al do claim to provide a
definition in that paper, but their definition is not rigorous, for example it is
unclear exactly which numbers rewards are allowed to be.) Furthermore, we
hope that the question of existence of transformations from one RL framework
to another will be a source of much interesting mathematics.

Our RL framework definition is quite general but not as general as possible.
More extreme variations of RL will require, in future work, more general RL
framework notions (but the ideas in this paper serve as a template for how one
can explore intelligence preservation results in those more general frameworks)4.
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