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Abstract. Metaphorical language is a pervasive feature of human com-
munication, yet its evolutionary origins remain poorly understood. Why
do speakers routinely convey meanings through figurative expressions
that are literally false, rather than relying on available literal descrip-
tions? In this paper, we present a formal model of the cultural evo-
lution of metaphorical language, combining the Rational Speech Act
framework with evolutionary game theory. Our model embeds pragmatic
agents, who engage in recursive reasoning about goals and meanings,
into a replicator–mutator dynamic where strategies are transmitted via
Bayesian learning. Our central hypothesis is that metaphor emerges as an
adaptive response to an evolutionary trade-off between communicative
accuracy and cognitive cost: when speakers aim to convey complex clus-
ters of features, repurposing simple conceptual categories metaphorically
can be more efficient than encoding those clusters through literal strate-
gies. To illustrate this, we analyze a highly simplified scenario where
communicative goals are dispersive, requiring the transmission of fea-
ture clusters rather than isolated features. This case study shows that,
under such conditions, metaphorical strategies can outcompete literal
ones.
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1 Introduction

Metaphor is one of the most striking and ubiquitous features of human language.
Speakers routinely describe referents in one domain using expressions drawn
from familiar categories in another domain—for example, calling a dangerous
and unscrupulous person a “shark,” or a wise and intelligent one an “owl.” Such
utterances are literally false, yet they reliably convey information about relevant
features of the intended referent [9,23,28]. But why should a language community
rely on these roundabout communicative devices, rather than sticking to literal
descriptions?

Formal pragmatics has shed new light on this question. The Rational Speech
Act (RSA) framework models communication as recursive reasoning between
cooperative agents [6,7,11], and can be seen as a probabilistic formalization of



2 Augusto Antonio Basilico

Grice’s maxims of conversation [12,13]. When extended with the Question Under
Discussion (QUD) framework [29,30,31], RSA captures a variety of non-literal
uses of language—including metaphor, hyperbole, and irony—by treating them
as informative with respect to shared communicative goals [20,21]. This line of
work explains how listeners can make sense of figurative utterances in a given
communicative exchange. However, RSA models are largely synchronic: they
presuppose fixed lexica and are not concerned with how communicative strategies
emerge, spread, and stabilize in a population over time.1

Evolutionary game theory (EGT) [17,18,24], by contrast, has been applied to
study how communicative strategies spread and stabilize in populations through
processes of learning and differential communicative success [26,27,32]. Within
the emerging field of evolutionary pragmatics [10], EGT has been applied to phe-
nomena such as scalar implicature [2,3] and hyperbole [22]. However, metaphor—
despite its centrality to human communication—has not, to our knowledge, been
given a formal evolutionary treatment. This leaves an important gap: we do not
yet know whether there are trade-offs under which metaphorical strategies be-
come evolutionarily viable, and if so, what their nature might be in relation to
communicative accuracy and cognitive cost in both communication and learning.

This paper addresses this gap by presenting a formal model of the cul-
tural evolution of metaphorical communication. The model integrates RSA-
based pragmatic reasoning with replicator–mutator dynamics [25]—a standard
tool within EGT—and Bayesian learning [14,15], building on the work of Brochha-
gen et al. [2,3] on the evolution of scalar implicatures. In our model, agents share
a simple conceptual framework with category terms (e.g., shark, owl) and fea-
ture terms (e.g., dangerous, clever). Communicative strategies differ in how they
express feature configurations: literal strategies express the features of the refer-
ent directly, whereas metaphorical strategies convey them indirectly by reusing
category terms that do not literally apply to the referent. Strategies are transmit-
ted across generations through Bayesian learning, and their evolutionary success
depends jointly on communicative accuracy and complexity cost.

To illustrate the model, we then examine a highly simplified but reveal-
ing case study in which communicative goals are dispersive, i.e., they require
agents to convey entire clusters of features at once. In this setting, metaphor-
ical strategies dominate, since reusing simple category terms is more efficient
than laboriously constructing complex literal descriptions from combinations of
feature terms. This simple case study shows how metaphor can emerge as an
adaptive solution to competing pressures for accuracy and simplicity in lan-
guage evolution. At the same time, it does not exhaust the modeling power of
our framework, which can be extended to alternative goal structures and richer
and more complicated communicative scenarios.

1 That is, RSA accounts are designed to model production and comprehension within
a single communicative interaction, rather than the diachronic processes by which
languages and strategies evolve across generations [3,2].
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2 Model Description

2.1 Syntax, Semantics, and the Shared Conceptual Framework

We begin by specifying the representational resources available to all agents
in the linguistic community. All individuals in the population share a common
language defined by a fixed syntax and a shared probabilistic semantics. This
language distinguishes between two types of terms:

– category terms C = {c1, . . . , cn}, each corresponding to a cognitively salient
prototype such as shark, owl, or puppy.

– feature terms Φ = {ϕ1, . . . , ϕm}, each denoting a binary property such as
dangerous, clever, or strong.

Well-formed formulas. The set of well-formed formulas WFF is generated in-
ductively according to the following grammar in Backus–Naur Form:

⟨Atom⟩ ::= ci = 1 | ϕj = 1 | ϕj = 0 (1 ≤ i ≤ n, 1 ≤ j ≤ m) (1)

⟨WFF⟩ ::= ⟨Atom⟩ | ¬⟨WFF⟩ | (⟨WFF⟩ ∧ ⟨WFF⟩) | (⟨WFF⟩ ∨ ⟨WFF⟩) (2)

Examples in Atommay include “cshark = 1” (“the referent is a shark”), “ϕdangerous

= 1” (“the referent is dangerous”), and “ϕdangerous = 0” (“the referent is harm-
less”).2 Instead, an example in WFF may be “cpuppy = 1 ∧ ϕclever = 1”, which
states that the referent is a clever puppy.

Complexity. The complexity of a formula C(u) is defined recursively:

C(u) = 1 if u ∈ Atom,

C(¬u) = 1 + C(u),

C(u ∧ v) = 1 + C(u) + C(v),

C(u ∨ v) = 1 + C(u) + C(v).

(3)

This measure will later serve as a proxy for cognitive cost, impacting both com-
munication and learning.

Semantic framework. Semantics is defined relative to a shared conceptual frame-
work F = (Ω, 2Ω, P ), which constitutes the common ground [5,33,34] among
linguistic agents:

– Ω is the set of possible kinds of objects (referents). More specifically, each
ω ∈ Ω is a total assignment ω : C ∪ Φ → {0, 1};

2 For features, the two opposite values are symmetric: both can be expressed as atomic
formulas of equal complexity (e.g., “ϕstrong = 1” for strong and “ϕstrong = 0” for
weak). Categories, by contrast, are asymmetric: only positive membership is atomic
(e.g., “cshark = 1”), while negative membership must be expressed by a compound
formula such as “¬(cshark = 1)”, which increases complexity.
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– 2Ω is the σ-algebra of all subsets of Ω;
– P is a probability distribution over 2Ω, encoding prior beliefs about the world

that all agents share.

The semantic value of a formula u ∈ WFF is the set of samples ω ∈ Ω in
which it holds. This is defined recursively:

Jci = 1KF = {ω ∈ Ω | ω(ci) = 1}, (4)

Jfj = 1KF = {ω ∈ Ω | ω(fj) = 1}, (5)

Jfj = 0KF = {ω ∈ Ω | ω(fj) = 0}, (6)

J¬uKF = Ω \ JuKF , (7)

Ju ∧ vKF = JuKF ∩ JvKF , (8)

Ju ∨ vKF = JuKF ∪ JvKF . (9)

Communicative strategies. To capture cognitive and expressive limits, we assume
a maximum complexity m, restricting agents to:

WFFm = {u ∈ WFF | C(u) ≤ m}. (10)

Each agent is endowed with a finite strategy lexicon L ⊆ WFFm of fixed size k,
representing the set of expressions they are able and willing to use as speakers.
While agents are assumed to be capable of interpreting any formula in WFFm

when acting as listeners, their productive vocabulary as speakers is restricted
to L. This models the cognitive and expressive asymmetry between linguistic
comprehension and production: humans are often capable of understanding ex-
pressions they would not naturally produce.3 In our framework, this constraint
allows us to formalize differences between strategies in terms of their expressive
capacity and cognitive load, which in turn influence their evolutionary viability.

Let L k
m ⊆ 2WFFm be the set of all size-k subsets of well-formed formulas with

complexity at most m. In other words, we define the space of possible speaker
lexicons as:

L k
m := {L ⊆ WFFm | |L|= k}. (11)

Each communicative strategy is defined as a pair (L, n) ∈ L k
m × {0, 1, . . . , N},

where n is the depth of recursive pragmatic reasoning [3,35]. We denote the full
space of strategies as:

Sm,k,N := L k
m × {0, 1, . . . , N}. (12)

This space captures the key cognitive and expressive dimensions over which
agents may differ: their available utterances as speakers (lexicon L) and their
inferential/pragmatic sophistication (depth n). In evolutionary simulations, se-
lection acts over this space of strategies, favoring those that optimize a trade-off
between communicative success and cognitive cost.

3 Such asymmetries are empirically well-attested—humans often understand more
than they can fluently produce [1,4,19].
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2.2 Pragmatic Reasoning and Communicative Strategies: The
RSA–QUD Component

Communication in the model is framed as a cooperative inferential process be-
tween speakers and listeners. In each exchange, the speaker observes an object
characterized by a complete feature configuration f and has a communicative
goal g. Importantly, we assume that every object in the environment has a
complete feature configuration, and that none of them literally instantiate the
category terms of the language: for instance, no object is itself a “shark” or an
“owl.” Given the pair (f, g), the speaker selects a message u ∈ L from their
lexicon to convey the goal-relevant aspects of f to the listener. The listener, in
turn, interprets the utterance by inferring both the intended goal and the cor-
responding projection of the feature configuration. This interaction follows the
RSA paradigm, extended with the QUD framework [30,31].

Feature configurations. A feature configuration is a function

f : Φ → {0, 1}, (13)

assigning to each feature ϕj ∈ Φ a binary value 1 (present) or 0 (opposite feature
present). The set of all possible feature configurations is denoted by F = {0, 1}Φ.
Each configuration f ∈ F induces an event in the underlying sample space Ω:

JfKF := {w ∈ Ω | w ↾Φ= f} (14)

where w ↾Φ denotes the restriction of a sample w ∈ Ω to the feature domain Φ.

Communicative goals as QUDs. Each interaction is oriented toward a commu-
nicative goal g ⊆ Φ, which we interpret as a QUD [29]. Intuitively, a goal identi-
fies which features of the referent object are at stake in the current communica-
tive exchange, and thus which dimensions of meaning are relevant for successful
communication. In other words, speakers do not aim to convey the entire fea-
ture configuration of a referent, but only the projection of that configuration
onto the feature set singled out by the goal [30,31]. We denote by G the set of
all possible communicative goals, that is, the space of feature subsets that can
be pragmatically relevant in a given communicative context.

Formally, given a full feature configuration f , its projection onto the goal
g ∈ G is defined (with a slight abuse of notation) as

g(f) := f ↾g, (15)

i.e. the restriction of f to the feature subset g. This projected configuration
induces an event in the shared conceptual framework:

Jg(f)KF := {w ∈ Ω | w ↾g= g(f)}. (16)

Thus the goal g determines which features matters for communication in a spe-
cific exchange, and communication is successful just in case the listener can
recover the goal-relevant projection of the feature configuration observed by the
speaker.



6 Augusto Antonio Basilico

Goal-equivalence. Two feature configurations f, f ′ ∈ F are said to be goal-
equivalent under goal g ∈ G if

g(f) = g(f ′). (17)

Intuitively, goal-equivalent configurations agree on the subset of features that
matter for the communicative task.

RSA agent behavior. Given a strategy (L, n) ∈ S k
m, an agent following it behaves

as follows: as a speaker, it selects utterances according to the distribution Sn(u |
f, g, L), where it is constrained to produce only utterances u ∈ L; as a listener,
it interprets utterances according to distribution Ln(f, g | u), which is defined
for all utterances, not only those in L. Both the speaker distribution Sn and the
listener distribution Ln are defined by recursively applying RSA-style equations
up to depth n, starting from the literal speaker S0 and the literal listener L0:

4

S0(u | f, g, L) ∝ 1[u∈L] ·

[
P

(
JuKF

∣∣∣∣∣ Jg(f)KF ∩

(
n⋃

i=1

Jci = 1KF

)c)]λ
, (18)

L0(f, g | u) ∝ PG(g) · P (JfKF | JuKF ) , (19)

Sk(u | f, g, L) ∝ 1[u∈L] · exp

λ ·

log

∑
f ′

1[g(f)=g(f ′)] · Lk−1(f
′, g | u)

− C(u)

 ,

(20)

Lk(f, g | u) ∝ P (JfKF ) · PG(g) ·
∑

L∈L k
m

PL (L) · Sk(u | f, g, L). (21)

Equation (18) defines the behavior of the literal speaker S0, which selects
utterances u when presented with a feature configuration f under communicative
goal g. The indicator function 1[u∈L] ensures that the speaker produces only
utterances contained in its lexicon L.

A central assumption of the model is that the actual environment contains
objects that do not literally instantiate any of the category terms (such as shark
or owl). In other words, speakers have to communicate about objects that never
fall under the literal denotation of any of the modeled shared categories: in
consequence, utterances of the form “ci = 1” are always literally false and cannot
be used by a literal speaker. To capture this restriction, the literal speaker’s
probability of producing an utterance u ∈ L is conditioned on the event that the
intended referent lies outside the extension of all known categories. Formally,
this is represented by a conditional probability of the form:

P

(
JuKF

∣∣∣∣∣ Jg(f)KF ∩

(
n⋃

i=1

Jci = 1KF

)c)
. (22)

4 These equations draw on Kao et al. [20] for metaphor understanding and on the
general RSA framework with QUD [30,31].
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This quantity gives the probability that utterance u holds true of the intended
referent, on the condition that the referent satisfies the goal-relevant feature pro-
jection Jg(f)KF but lies outside the extension of all category terms c1, . . . , cn.
Finally, the exponential weighting in (18) is governed by the rationality param-
eter λ > 0.5

Equation (19) defines the behavior of the literal listener L0, who, upon hear-
ing utterance u, infers both the feature configuration f and the communicative
goal g. The literal listener is not constrained by any lexicon and interprets u
solely based on its literal denotation. Interpretation is guided by a prior over
goals PG(g) and a conditional probability P (JfKF | JuKF ), which evaluates how
likely the feature configuration f is, given the literal meaning of u.

Equation (20) defines the behavior of the pragmatic speaker Sk, who chooses
utterances by reasoning about how a listener of depth k−1 would interpret them.
As in (18), the indicator function 1[u∈L] ensures that only utterances contained in
the speaker’s lexicon L receive non-zero probability. The choice of the utterance
is guided by a compromise between informativeness and cost [6,8]. Informative-
ness is measured by the logarithm of the sum

∑
f ′ 1[g(f)=g(f ′)] · Lk−1(f

′, g | u),
which ranges over all feature configurations f ′ but includes only those that are
goal-equivalent to f under goal g, in the sense of (17), that is, those configurations
whose goal-relevant projection coincides with g(f). For these configurations, the
term evaluates how likely a level-(k−1) listener would recover them upon hearing
u. The cost term C(u)—as defined in (3)—penalizes utterances that are com-
plex or otherwise costly to produce, so that the resulting distribution balances
informativeness against cost.6

Equation (21) defines the behavior of the pragmatic listener Lk. Upon hear-
ing an utterance u, the listener jointly infers the feature configuration f and
the communicative goal g. This inference is guided by three components. First,
the prior P (JfKF ) encodes expectations about feature configurations in the en-
vironment. Second, the prior PG(g) captures the relative likelihood of different
communicative goals. Finally, the summation marginalizes over possible lexica
L ∈ L k

m, weighted by their prior probability PL (L), and incorporates the be-
havior of a level-k speaker Sk(u | f, g, L), which specifies the likelihood that a
speaker using strategy (L, k) would have produced the utterance u when trying
to communicate about (f, g). Thus, the pragmatic listener of depth k is modeled
as an agent who combines priors over configurations and goals with expectations
about speaker strategies, integrating over lexical uncertainty.

5 For λ → 0, the literal speaker’s behavior approaches randomness; as λ → +∞, the
speaker deterministically chooses the utterance in L that maximizes the conditional
probability given by (22)—that is, the utterance most likely to hold of the intended
referent given the goal projection g(f) and the restriction that the referent lies
outside the extension of all category terms.

6 Furthermore, the exponential form corresponds to a softmax function, where the
rationality parameter λ > 0 determines how sharply the speaker concentrates on the
best utterances, with λ → 0 yielding near-random behavior and λ → +∞ yielding
deterministic choice of the maximally informative, least costly utterance.
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Strategies and prior biases. We define a prior over strategies (L, n) ∈ Sm,k,N as
the product of a prior over lexica and a prior over reasoning depth:

PS ((L, n)) = PL (L) · PD(n). (23)

The lexicon prior PL (L) penalizes utterance complexity. Since each utterance
u ∈ WFFm has a well-defined complexity cost C(u) given by (3), we define:

PL (L) ∝ 1∑
u∈L C(u)

, (24)

so that lexica composed of simpler utterances are favored.
The depth prior PD(n) favors shallower pragmatic reasoning, reflecting cog-

nitive and computational limitations. It is assumed to be a decreasing function
of n, for example:

PD(n) ∝ e−α·n, n = 0, . . . , N, (25)

for some fixed α > 0.
Together, these priors model learning biases that promote low-complexity,

cognitively accessible strategies, increasing their evolutionary viability: simpler
lexica and shallower reasoning are more learnable and therefore more likely to
spread.

2.3 Bayesian Learning of Communicative Strategies

Strategies are not inherited directly but transmitted culturally via learning. Each
agent acquires a strategy (L, n) ∈ Sm,k,N by observing a finite dataset of com-
municative behavior produced by a teacher. This process is modeled as Bayesian
inference over strategies [3,14,15].

Data observed by a learner. A learner is exposed to a k-length dataset

d = ⟨(f1, u1), . . . , (fk, uk)⟩, (26)

where each pair (fi, ui) consists of an observed feature configuration fi ∈ F and
the corresponding utterance ui ∈ WFFm produced by the teacher.

Posterior inference. Given data d, the learner infers a posterior distribution over
possible teacher strategies (L, n) ∈ Sm,k,N :

PS ((L, n) | d) ∝ PS ((L, n)) · PS (d | (L, n)). (27)

where, as we have seen in (23), the prior over strategies decomposes into inde-
pendent components, i.e., PS ((L, n)) = PL (L) · PD(n).

Likelihood. The likelihood of observing dataset d given (L, n) as the teacher’s
strategy is:

PS (d | (L, n)) ∝
k∏

i=1

∑
g

PG(g) · Sn(ui | fi, g, L), (28)

where Sn is the speaker of depth n defined in Eqs. (18)-(21).
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Learning precision. To capture variability in how faithfully learners adopt in-
ferred strategies, we introduce a learning precision parameter ℓ [3]. The effective
learning posterior, i.e. the probability that a learner acquires strategy (L, n) from
dataset d, is given by:

Plearn((L, n) | d) ∝ [PS ((L, n) | d)]ℓ . (29)

When ℓ → 0, learning becomes uniformly random; when ℓ → +∞, the learner
adopts the Maximum a Posteriori (MAP) strategy.

From individual learning to population mutation. Let a teacher use strategy
(L′, n′) ∈ Sm,k,N . The mutation matrix gives then the probability that a learner
exposed to a teacher of type (L′, n′) acquires strategy (L, n):

Q((L′, n′), (L, n)) =
∑
d

Plearn((L, n) | d) · PS (d | (L′, n′)). (30)

This Q is the cultural transmission channel that will appear as the mutation
term in the replicator–mutator dynamics.

2.4 Cultural Evolution: Replicator–Mutator Dynamics

The long-run distribution of communicative strategies in the population is gov-
erned by a replicator–mutator dynamic [25]. This framework combines two forces:

– Replication: strategies with a better trade-off between communicative suc-
cess and communicative costs tend to increase in frequency.

– Mutation: due to imperfect learning, learners may acquire a strategy different
from their teacher’s. This is captured by the mutation matrix Q in (30).

Population state. Let x(L,n) denote the proportion of agents using strategy
(L, n) ∈ Sm,k,N in the population. The state of the population at time t is
thus the simplex vector

x(t) = (x(L,n)(t))(L,n)∈Sm,k,N
. (31)

Interaction model and success criterion. An interaction pairs a speaker of type
(L, n) with a listener of type (L′, n′). A feature configuration f ∈ F and a goal
g ⊆ F are drawn independently from priors Penv(f) = P (JfKF | (

⋃n
i=1Jci = 1KF )

c
)

and PG(g).
7 The speaker samples an utterance u ∈ L from the policy Sn(u |

7 Penv defines the distribution over observable feature configurations in the actual en-
vironment. We condition on the complement of the union of all category extensions,(⋃n

i=1Jci = 1KF
)c
, because—as discussed in Sect. 2.2—the model assumes that ac-

tual objects presented to speakers do not fall under any of the shared conceptual
categories. The communicative game thus takes place in a literal space with re-
spect to feature terms, and in a metaphorical space with respect to category terms:
speakers must communicate features of objects that resemble known categories, but
do not literally belong to them. Accordingly, categorical utterances such as “John
is a shark” are assumed to be literally false, yet potentially informative. We shall
investigate under which conditions metaphorical category labeling becomes more
evolutionarily advantageous than literal feature ascription.
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f, g, L); the listener forms a posterior Ln′(f ′, g′ | u) over configurations f ′ and
goals g′. Communicative success is defined at the level of goal-relevant projec-
tions:

δ(g(f), g′(f ′)) =

{
1 if g(f) = g′(f ′),

0 otherwise.
(32)

Thus a message succeeds if the listener recovers exactly the intended goal and
the intended feature cluster under the intended goal.8

Expected communicative success and cost. Let F and G be random variables for
the feature configuration presented to the speaker and the speaker’s communica-
tive goal, respectively. Let U be the random variable for the speaker’s utterance,
and (F ′, G′) the random variables for the listener’s reconstructed feature con-
figuration and goal. The expected communicative success of a speaker of type
(L, n) with a listener of type (L′, n′) is given by:

Succ((L,n) −→ (L′, n′)) := Ef,g Eu∼Sn(·|f,g,L) E(f ′,g′)∼Ln′ (·|u)

[
δ(g(f), g′(f ′))

]
=

∑
f,g,u,f ′,g′

Penv(f)PG(g)Sn(u | f, g, L)Ln′(f ′, g′ | u) δ(g(f), g′(f ′)).

(33)

Communication incurs a per-utterance expected communicative cost:

Cost((L, n) −→ (L′, n′)) := Ef,g Eu∼Sn(·|f,g,L)[C(u)]

=
∑
f,g,u

Penv(f)PG(g)Sn(u | f, g, L)C(u). (34)

Here, we measure the communicative cost in terms of the structural complexity
C(u) of the utterances, as defined in (3): more complex formulas incur higher
costs, reflecting greater cognitive or expressive effort. The expected cost is com-
puted by averaging over the speaker’s utterance distribution given each feature-
goal pair sampled from the environment.

One-way payoff and sender–receiver symmetry. The one-way payoff of an inter-
action (L, n) −→ (L′, n′) is the payoff that arises when a speaker of type (L, n)
communicates with a listener of type (L′, n′). Treating communication as a co-
operative process, we assume both agents receive the same payoff. The payoff is
defined as expected communicative success minus expected communicative cost:

Payoff((L, n) −→ (L′, n′)) = Succ((L, n) −→ (L′, n′)) −b·Cost((L, n) −→ (L′, n′)).
(35)

8 Note that δ(g(f), g′(f ′)) = 1 if and only if g = g′ and g(f) = g(f ′), that is, if and
only if the listener recovers both the intended goal g and a feature configuration
f ′ that is goal-equivalent to the intended one under g, according to (17). Thus, a
message is counted as successful only when the listener infers exactly the intended
communicative goal and the relevant feature cluster under that goal.
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where b > 0 controls the trade-off between communicative success and com-
municative cost. Higher values of b penalize complex utterances more heavily,
thereby favoring strategies that communicate effectively with simpler messages.

Because agents alternate between speaker and listener roles, we define the
symmetrized payoff Γ((L, n), (L′, n′)) as the average of the two one-way payoffs.
Concretely, it is the mean of the payoff when (L, n) acts as speaker to (L′, n′)
and the payoff when (L′, n′) acts as speaker to (L, n):

Γ((L, n), (L′, n′)) =
1

2

[
Payoff((L, n) −→ (L′, n′)) + Payoff((L′, n′) −→ (L, n))

]
.

(36)
This symmetrized payoff is the value assigned to both strategies (L, n) and
(L′, n′) when they interact with each other, reflecting their joint performance
across both communicative roles [26,27].

The fitness of strategy (L, n) in population state x is then

F (L, n) =
∑

(L′,n′)∈Sm,k,N

x(L′,n′) · Γ((L, n), (L′, n′)). (37)

Dynamics. The rate of change of x(L,n) is given by the replicator–mutator equa-
tion [25]:

dx(L,n)

dt
=

∑
(L′,n′)∈Sm,k,N

x(L′,n′) Q((L′, n′), (L, n)) F (L′, n′) − x(L,n) · F̄ , (38)

where:

– Q((L′, n′), (L, n)) is the mutation probability defined in (30),
– F (L′, n′) is the fitness of strategy (L′, n′) defined in (37),
– F̄ is the mean fitness of the population:

F̄ =
∑

(L,n)∈Sm,k,N

x(L,n) · F (L, n). (39)

Interpretation. The first term on the right-hand side of (38) captures the in-
flow of learners who adopt strategy (L, n) after being trained by teachers of
type (L′, n′). The second term subtracts the baseline replication proportional to
the average fitness F̄ , which ensures that population shares remain normalized,
i.e.

∑
(L,n)∈Sm,k,N

x(L,n)(t) = 1 for all t. At equilibrium, the population dis-
tribution x∗ reflects a balance between selective pressures—favoring strategies
that optimize the trade-off between communicative success and cost—and muta-
tional noise induced by imperfect learning. We should note that complexity costs
shape both dimensions: in learning, prior biases—as shown in (23)—favor sim-
pler strategies, making them more likely to be acquired; in communication, sim-
pler strategies reduce the expected cost of expression, as shown in (35), thereby
offering a direct advantage in use.
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3 Case Study: Dispersive Communicative Goals

While we leave to future work the task of exploring the full potential of the
model just presented, here we restrict our attention to a highly simplified yet
revealing test case. Our aim is not to exhaust the model’s expressive resources,
but to establish a basic result : metaphorical strategies can become evolutionarily
advantageous when communicative goals are dispersive, that is, when agents aim
to transmit information about clusters of features at once.

3.1 Case Study Description

Features and categories. The common language of our case study includes three
feature terms, each of which can be either true (= 1) or false (= 0):

– ϕdangerous, true if the object is dangerous and false if harmless;
– ϕclever, true if the object is clever and false if stupid;
– ϕstrong, true if the object is strong and false if weak.

Together, these terms define a space of 8 feature configurations f : Φ → {0, 1},
where each configuration assigns a binary value to the three feature dimensions:
dangerousness, cleverness, and strength.

In parallel with feature terms, the language also contains a set of eight cate-
gory terms intended to evoke familiar prototypes:

C = {ctiger, csnake, cshark, cgoose, celephant, cowl, cox, cpuppy}.

Each category is associated with a prototypical feature vector configuration,
shown in Table 1. For instance, the prototype for tiger is dangerous, clever, and
strong, while the prototype for puppy is harmless, stupid, and weak. Formally, we
define a mapping π : C → {0, 1}3, s. t. π(c) = (π(c)dangerous, π(c)clever, π(c)strong)
gives the canonical values of (ϕdangerous, ϕclever, ϕstrong) for category c.

Shared conceptual framework. Each sample ω ∈ Ω is a total assignment ω :
C ∪ Φ → {0, 1}, specifying both the categorical labels and the feature values
of a hypothetical kind of object. The sample space Ω divides into three disjoint
regions.

First, multi-categorical samples are those for which there exist distinct i, j s.t.
ω(ci) = ω(cj) = 1. These are excluded by an assumption of category exclusivity,
hence P (ω) = 0.

Second, uni-categorical samples are those where exactly one category holds,
i.e. ∃! c ∈ C s.t. ω(c) = 1. For these samples we define

c∗(ω) = the unique category c ∈ C s.t. ω(c) = 1. (40)

The probability of ω is then determined by the distance between its projected
feature configuration ω|Φ and the prototype π(c∗(ω)) of its associated category:

P (ω) ∝ K(d(ω|Φ, π(c∗(ω)))), (41)
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Table 1: Category terms and their prototypical feature configurations
(ϕdangerous, ϕclever, ϕstrong).

Category ϕdangerous ϕclever ϕstrong

ctiger 1 1 1
csnake 1 1 0
cshark 1 0 1
cgoose 1 0 0
celephant 0 1 1
cowl 0 1 0
cox 0 0 1
cpuppy 0 0 0

where d is the Hamming distance [16] andK is a decreasing function (e.g.K(d) =
e−βd). Normalization ensures that uni-categorical samples carry total probability
mass 1/2.

Third, non-categorical samples are those for which ∀c ∈ C, ω(c) = 0. In
this case feature values are drawn from a base distribution PN on {0, 1}Φ. For
simplicity, we take PN to be uniform, so PN(f) = 1/8 for every f ∈ {0, 1}Φ.
We assign this slice total probability 1/2. Since there are eight possible non-
categorical samples, each has probability P (ω) = 1/2·PN(ω|Φ) = 1/2·1/8 = 1/16.

Observational environment. In the communicative game, speakers are only pre-
sented with non-categorical objects. The effective distribution over feature con-
figurations is therefore Penv(f) = P(JfKF | non-categorical samples) = PN(f) =
1/8, for every f ∈ {0, 1}Φ.

Communicative goal and strategies. In our simplified case study, speakers al-
ways aim to transmit the entire feature vector: ergo G = {Φ} and PG(Φ) = 1.
Furthermore, we compare only two strategies:

– Literal strategy (Llit, nlit): its lexicon contains one conjunction for each of
the 8 feature triples, Llit = {(ϕd=i)∧ (ϕc=j)∧ (ϕs=k) | i, j, k ∈ {0, 1}}, with
reasoning depth nlit = 0.

– Metaphorical strategy (Lmet, nmet): its lexicon contains the 8 category atoms
Lmet = {c=1 | c ∈ C}, with nmet = 1.

Replicator Dynamics. In this restricted comparison, the two lexica are disjoint
(Llit ∩Lmet = ∅). Consequently, learning cannot map one lexicon into the other,
so the mutation matrix Q defined in (30) is the identity matrix I, meaning
Q((L′, n′), (L, n)) = δ((L′, n′), (L, n)). The replicator–mutator dynamics thus
collapses to the pure replicator equation [17,18,25]:

dxmet

dt
= xmet(Fmet − F̄ ), (42)

where xmet denotes the proportion of agents using the metaphorical strategy
(Lmet, nmet) in the population, and Fmet its associated fitness.



14 Augusto Antonio Basilico

Fig. 1: Graph of the function f(xmet) = xmet(Fmet − F̄ ) in the RHS of the
replicator equation (42) for the test case, generated using Python.

3.2 Results

With parameter values: β = 1, λ = 1, b = 0.5, the resulting symmetrized payoff
matrix Γ is:

Γ =

(
−1.500 −0.888
−0.888 −0.277

)
,

where rows/columns are ordered as ((Llit, nlit), (Lmet, nmet)).
Figure 1 shows the right-hand side function of the replicator equation:

f(xmet) = xmet(Fmet − F̄ ). (43)

The function is positive throughout the interior (0, 1), with f(0) = f(1) = 0.

Equilibrium and stability. Since Γmet,met = −0.277 > Γlit,met = −0.888, the
metaphorical strategy (Lmet, nmet) is a strict Nash equilibrium (NE). Every strict
NE is also an evolutionarily stable strategy (ESS), hence (Lmet, nmet) is an ESS
[24,25]. Moreover, because f(xmet) = xmet(Fmet − F̄ ) is strictly positive for all
xmet ∈ (0, 1), the replicator dynamics guarantees global convergence: xmet(t) →
1 as t → +∞. Thus, under this highly simplified scenario with one (dispersive)
goal and two strategies, the metaphorical strategy robustly dominates the literal
strategy.

3.3 Discussion

The analysis of dispersive goals under our simplified setup shows a clear result:
metaphorical strategies can strictly dominate literal ones and converge to fix-
ation under replicator dynamics. This provides a proof-of-concept that the use
of metaphor can be evolutionarily advantageous when communication requires
conveying entire clusters of features at once. At the same time, these results are
obtained under highly idealized assumptions. We considered only:
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– a single communicative goal (the full feature vector);
– two strategies with disjoint lexica, making the mutation matrix trivial (iden-

tity matrix);
– uniform priors over non-categorical objects.

In this setting, imperfect learning does not occur, and no partially overlapping
strategies were admitted.

A natural extension is to allow for richer sets of communicative goals, in-
cluding both dispersive goals (full or multi-feature transmission) and specific
goals (communication about a single or a few features). This would enable di-
rect competition between strategies specialized for different communicative de-
mands. It would also be important to introduce a wider range of strategies: not
only purely literal or purely metaphorical ones, but also strategies with partly
literal (feature-based) and partly metaphorical (category-based) lexica, and espe-
cially explore strategy spaces with partially overlapping lexica, where imperfect
Bayesian learning (i.e., mutation) becomes central to the dynamics.

Finally, the parameter space itself remains unexplored. The rationality pa-
rameter λ, which regulates the sharpness of pragmatic reasoning, and the evolu-
tionary trade-off parameter b between communicative success and cost are espe-
cially promising levers. Varying these parameters may shift the balance between
literal and metaphorical strategies, alter the stability of equilibria, or generate
coexistence dynamics.

The present paper thus merely sets the stage, by illustrating the framework
in its general form and showcasing its potential with a single, tractable yet highly
revealing case study. A more systematic exploration will be the subject of future
work.

4 Conclusion

We have presented a formal model of the cultural evolution of metaphorical
language by embedding RSA [6,7] reasoning into a replicator–mutator dynamic
[25] with Bayesian learning [14,15], following the approach of Brochhagen et al.
[2,3] on scalar implicatures. The model represents communicative strategies as
lexica paired with pragmatic depth, and evaluates them under selective pressures
balancing communicative success and cognitive cost.

In a simplified test case with a single, dispersive, communicative goal, we
found that metaphorical strategies form a strict Nash equilibrium, driving the
entire population toward metaphorical communication. This initial and “small”
exploration begins to provide a principled explanation of why figurative language
may be adaptively favored in certain communicative environments.

Although highly idealized, this case study highlights the power of the pre-
sented modeling framework and points the way toward richer analyses involving
multiple goals, increased strategy variation, imperfect learning, and systematic
parameter sweeps. The broader aim is to integrate formal pragmatics with EGT,
opening a novel research program on the adaptive dynamics of metaphorical
communication.
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