Behaviour and Reasoning Description Language (BRDL)

Antonio Cerone

Department of Computer Science School of Science and Technology Nazarbayev University Nur-Sultan, Kazakhstan

email: antonio.cerone@nu.edu.kz

BRDL

- Behaviour and Reasoning Description Language
 - knolwledge representation
 - knowledge retrieval
 - reasoning
 - human behaviour
 - problem solving

Human Memory

Human Memory

CIFMA 2019, 17 September 2019

Long-Term Memory (LTM)

CIFMA 2019, 17 September 2019

Long-Term Memory (LTM)

LTM Components

LTM Components

Semantic Memory

Semantic Memory

Semantic Memory

Example of Semantic Network

Example of Knowledge Domain

Example of Knowledge Domain

Example of Knowledge Domain

CIFMA 2019, 17 September 2019

Knowledge Representation animals : animal $| \stackrel{d_1}{\Longrightarrow} | does(breath)$

Knowledge Representation

 $\begin{array}{l} animals : animal \mid \stackrel{d_1}{\Longrightarrow} \mid does(breath) \\ dogs : dog \mid \stackrel{d_2}{\Longrightarrow} \mid is_a(animal) \\ dogs : dog \mid \stackrel{d_3}{\Longrightarrow} \mid does(bark) \\ dogs : basenji \mid \stackrel{d_4}{\Longrightarrow} \mid doesnt(bark) \end{array}$

Knowledge Representation

animals : animal $| \implies | does(breath)$ $dogs: dog | \xrightarrow{d_2} | is_a(animal)$ $dogs: dog | \implies | does(bark)$ $dogs: basenji | \xrightarrow{d_4} | doesnt(bark)$ $dogs: sheepdog | \xrightarrow{d_5} | is_a(dog)$ $dogs: sheepdog | \xrightarrow{d_6} | works(sheep) |$ $dogs: collie | \implies | is_a(sheepdog)$ $dogs: lassie | \implies | is_a(collie)$

Knowledge Representation

animals : animal $| \implies | does(breath)$ $dogs: dog | \xrightarrow{d_2} | is_a(animal)$ $dogs: dog | \implies does(bark)$ $| dogs : basenji | \implies | doesnt(bark)$ $dogs: sheepdog | \xrightarrow{d_5} | is_a(dog)$ $dogs: sheepdog | \xrightarrow{d_6} | works(sheep) |$ $dogs: collie | \implies | is_a(sheepdog)$ $dogs: lassie | \Longrightarrow | is_a(collie)$ $dogs: hound | \xrightarrow{d_9} | does(track)$

Knowledge Retrieval

Knowledge Retrieval

Knowledge Retrieval

Deeper Retrieval Outcome

Climbing the Semantic Network

does(dog, breath)

Climbing the Semantic Network

does(basenji, breath)

Deliberate Control: Reasoning

Deliberate Control: Reasoning

Deliberate Control: Behaviour

Deliberate Control: Behaviour

Closure

Automatic Control

Deliberate Behaviour Example

Deliberate Behaviour Example

Behaviour+Reasoning

Behaviour+Reasoning

Behaviour+Reasoning: Action

Behaviour+Reasoning: Action

Conclusion

Behaviour and Reasoning Description Language

- knolwledge representation
- knowledge retrieval
- reasoning
- human behaviour
- problem solving

Conclusion

Behaviour and Reasoning Description Language

- knolwledge representation
- knowledge retrieval
- reasoning
- human behaviour
- problem solving

Further and Future Work

- Further Completed Work
 - Implementation of reasoning Antonio Cerone and Peter Csaba Ölveczky Modelling Human Reasoning in Practical Behavioural Contexts using Real-time Maude to be presented at FMIS 2019, 7 October 2019, Porto, Portugal

Further and Future Work

- Further Completed Work
 - Implementation of reasoning Antonio Cerone and Peter Csaba Ölveczky Modelling Human Reasoning in Practical Behavioural Contexts using Real-time Maude to be presented at FMIS 2019, 7 October 2019, Porto, Portugal

Future Work

Implementation of problem solving

Further and Future Work

- Further Completed Work
 - Implementation of reasoning Antonio Cerone and Peter Csaba Ölveczky Modelling Human Reasoning in Practical Behavioural Contexts using Real-time Maude to be presented at FMIS 2019, 7 October 2019, Porto, Portugal

Future Work

- Implementation of problem solving
- Use the language to
 - compare alternative theories of cognition
 - formally verify interactive systems