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Information flow in proofs



Applied Proof Theory: “Proof Mining”

‘What more do we know if we have proved a theorem by restricted

means than if we merely know that it is true? (G. Kreisel, 50’s)

Input: Noneffective proof p of theorem A.

Goal: New information on A extracted by computing proof pI of AI :

Effective bounds,

Algorithms,

Independence of the bound from certain data (uniformity).

The interpretation I exhibits the flow of data in the proof: this uses new

higher order concepts!
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“Proof Mining” in core mathematics

During the last 20 years this proof-theoretic approach has resulted in

numerous new quantitative results as well as qualitative

uniformity results in: number theory, combinatorics, nonlinear

analysis, fixed point theory, ergodic theory, topological dynamics,

approximation theory, nonsmooth optimization etc.

General logical metatheorems explain this as instances of logical

phenomena (K. 2005, Gerhardy/K. 2008, TAMS).
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Direct proofs: Herbrand’s Theorem

Let ∃x Aqf (x) be a sentence with quantifier-free Aqf provable in a

theory T which is axiomatized by purely universal axioms ∀y Tqf (y).

Then there are finitely many closed terms (built up from the material in

Aqf ,Tqf ) s1, . . . , sk , t1, . . . , tn such that

k∧
i=1

Tqf (si )→
n∨

j=1

Aqf (tj )

is a quasi-tautology.

Hence ∃x Aqf (x) has a direct proof by introducing quantifiers and using

contractions.
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Example (U. Berger)

Consider open theory T := {∀x(S(x) 6= 0)} in language with equality,

constant 0 and two unary function symbols S, f .

Proposition

T ` ∃x
(
f (S(f (x))) 6= x).

Proof: Suppose that

∀x
(
f (S(f (x))) = x

)
,

then f is injective, but also (since S(x) 6= 0) surjective on

{x : x 6= 0} and hence non-injective. Contradiction! 2
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An analysis of the above proof extracts Herbrand terms

s1, . . . , sk , t1, . . . , tn s.t.

(
k∧

i=1

S(si ) 6= 0)→
n∨

j=1

(f (S(f (tj ))) 6= tj )

is a quasi-tautology.

Indeed:

s1 := f (f (0)), t1 := 0, t2 := f (0) or t3 := S(f (f (0)))

satisfy this.

One can even extract the finitely many instances of the equality axioms

sufficient.
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Nonfeasible number of terms

Consider the following fragment of number theory (due to P. Pudlak):

L(T ) contains constants 0, 1, function symbols +, 2(·), a unary

predicate I (·) for being an integer.

Non-logical axioms: x + (y + z) = (x + y) + z, y + 0 = y , 20 = 1,

2x + 2x = 21+x , I (0), I (x)→ I (1 + x).

The conjunction of the universal closure of these non-logical axioms can

be written as a sentence ∀x Aqf (x) with Aqf quantifier-free.

We use as an abbreviation: 20 := 0, 2k+1 := 22k .

One can show that any direct proof of ` ∀x Aqf (x)→ I (2k) (without

the use of logically involved intermediate concepts used as lemmas) has

size ≥ 2k .
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Pudlak continued: detours via new concepts

With the use of logically complex relations

R0(x) := I (x), Rn+1(x) := ∀y
(
Rn(y)→ Rn(2x + y)

)
in lemmas and modus ponens one can give a short proof of I (2k)

(essentially linear on k): by meta-induction on i one gives short

derivations of

(∗) Ri (0) ∧ ∀x (Ri (x)→ Ri (1 + x)) :

For the induction step observe that by 20 = 1

Ri+1(0)↔ ∀y (Ri (y)→ Ri (1 + y))

where the right-hand side is the 2nd conjunct from the I.H.
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Moreover Ri+1(x) implies using it twice (contraction!)

Ri (y)→ Ri (2x + y) and Ri (2x + y)→ Ri (2x + (2x + y))

and so by syllogism (cut)

Ri (y)→ Ri (21+x + y), i.e. Ri+1(1 + x).
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Since

Rk(0)→ (Rk−1(0)→ (Rk−2(0)→ . . .→ R0(2k) . . .))

R0(2k), i.e. I (2k) follows by k modus ponens applications using (∗).

Challenge in automated deduction: guess useful intermediate

lemmas to speed up proofs!

Compression of proofs by use of nested quantifiers.
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No fixed finite number of terms at all

Proposition

Let f : N→ N be an arbitrary function. Then

∀k ∈ N∃n ≥ k(f (n) ≤ f (n2)).

Proof: Consider

Sk := {m ∈ N : ∃n ≥ k(f (n) = m)}.

Since Sk 6= ∅ and Sk ⊆ N, Sk has a smallest element mk ∈ Sk . Let

n ≥ k be such that f (n) = mk . Then f (n) ≤ f (ñ) for all ñ ≥ k which

in particular applied to n2. 2
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Discussion 1

The proof uses induction along a predicate which is not quantifier-free:

Herbrand’s theorem is not valid here!
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Discussion 2

The above proofs establishes a stronger statement:

(+) ∀k ∈ N ∃n ≥ k ∀m ≥ k (f (n) ≤ f (m)).

This is essentially noneffective: there is a (low complexity) computable

function f s.t. there is no computable α(k) which produces an

n = α(k) with (+).
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Discussion 3

However, a solution n for k can be learned with (f (k) + 1)-many

mind changes:

First take n0 := k. If one runs into a counterexample

m0 ≥ k ∧ f (n0) > f (m0)

change your mind from n0 to n1 := m0 and so on.

Such a mind change can happen at most (f (k) + 1)-many times since

otherwise

f (k) = f (n0) > . . . > f (nf (k)+1) ≥ 0 (Contradiction!).
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The no-counterexample interpretation

The problem with (+) is that it has the form ∀∃∀ instead of ∀∃.

However, statements of the form

(1) ∀k ∃n ∀m Aqf (k, n,m)

can be equivalently written in ∀∃-form (using a 2nd order quantifier)

(2) ∀k ∀g ∃n Aqf (k, n, g(n)).

(1)⇒ (2) is trivial while (2)⇒ (1) follows by contradiction: let (2) be

given but

¬(1) ∃k ∀n ∃m ¬Aqf (k, n,m).

Then (choice function)

∃k ∃g ∀n ¬Aqf (k, n, g(n))

which contradicts (2).

Information flow in proofs



The no-counterexample interpretation

The problem with (+) is that it has the form ∀∃∀ instead of ∀∃.

However, statements of the form

(1) ∀k ∃n ∀m Aqf (k, n,m)

can be equivalently written in ∀∃-form (using a 2nd order quantifier)

(2) ∀k ∀g ∃n Aqf (k, n, g(n)).

(1)⇒ (2) is trivial while (2)⇒ (1) follows by contradiction: let (2) be

given but

¬(1) ∃k ∀n ∃m ¬Aqf (k, n,m).

Then (choice function)

∃k ∃g ∀n ¬Aqf (k, n, g(n))

which contradicts (2).

Information flow in proofs



The no-counterexample interpretation

The problem with (+) is that it has the form ∀∃∀ instead of ∀∃.

However, statements of the form

(1) ∀k ∃n ∀m Aqf (k, n,m)

can be equivalently written in ∀∃-form (using a 2nd order quantifier)

(2) ∀k ∀g ∃n Aqf (k, n, g(n)).

(1)⇒ (2) is trivial while (2)⇒ (1) follows by contradiction: let (2) be

given but

¬(1) ∃k ∀n ∃m ¬Aqf (k, n,m).

Then (choice function)

∃k ∃g ∀n ¬Aqf (k, n, g(n))

which contradicts (2).
Information flow in proofs



A constructive interpretation of (2) is given by a 3rd order functional Φ

which refutes any attempt g to refute (1) :

∀k ∀g Aqf (k,Φ(k, g), g(Φ(k, g)))

So Φ solves the no-counterexample interpretation (G. Kreisel) of (1).
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Back to the example

Instead of

(+) ∀k ∈ N∃n ≥ k∀m ≥ k(f (n) ≤ f (m))

consider the equivalent no-counterexample formulation

(++) ∀k ∈ N ∀g : N→ N ∃n ≥ k (f (n) ≤ f (gk(n))),

where

gk(n) := max{g(n), k}.
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In contrast to (+) its no-counterexample interpretation (++) has an

effective solution!

Define recursively:

Φ(g , k, 0) := k, Φ(g , k, i + 1) := gk(Φ(g , k, i)).

Assume that for all i ≤ f (k)

f (Φ(i)) > f (gk(Φ(i))),

i.e.

f (Φ(i)) > f (Φ(i + 1))

and hence

f (k) = f (Φ(0)) > . . . > f (Φ(f (k) + 1)) ≥ 0.

Contradiction!
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Hence there exists an i ≤ f (k) with

f (Φ(i)) ≤ f (gk(Φ(i)))

and so (since Φ(i) ≥ k) for Ψ(f , g , k) := max
i≤f (k)

Φ(g , k, i):

∃n ≤ Ψ(f , g , k) (n ≥ k ∧ f (n) ≤ f (gk(n))).

For g(n) := n2 we get

∃n ≤ k2f (k)

(n ≥ k ∧ f (n) ≤ f (n2)).

Comment: The number of potential witnessing data is no longer a fixed

finite number (e.g. 3), but depends variably on f (k), k.
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The monotone convergence principle

Let (an) be a nonincreasing sequence in [0, 1]. Then, clearly, (an) is

convergent and so a Cauchy sequence which we write as:

(1) ∀k ∈ N ∃n ∈ N ∀m ∈ N ∀i, j ∈ [n; n + m] (|ai − aj| ≤ 2−k),

where [n; n + m] := {n, n + 1, . . . , n + m}.

Then as above this is equivalent to

(2) ∀k ∈ N ∀g ∈ NN ∃n ∈ N ∀i, j ∈ [n; n + g(n)] (|ai − aj| ≤ 2−k).
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By E. Specker 1949 there exist computable such sequences (an) even in

Q ∩ [0, 1] without computable bound on ‘∃n’ in (1).

By contrast, there is a simple (primitive recursive) bound Φ∗(g , k) on

(2) (also referred to as ‘metastability’ by T.Tao):

Proposition

Let (an) be any nonincreasing sequence in [0, 1] then

∀k∈N∀g ∈ NN ∃n ≤ Φ∗(g , k)∀i , j ∈ [n; n+g(n)] (|ai−aj | ≤ 2−k),

where

Φ∗(g , k) := g̃ (2k−1)(0) with g̃(n) := n + g(n).

Moreover, there exists an i < 2k such that n can be taken as g̃ (i)(0).
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Noneffective proofs, effective learnability

by finitely many mind changes

In both examples above the proof of the original statement makes use of

the law-of-excluded middle (LEM) in the form

Σ0
1-LEM : ∀n ∈ NAqf (k, n) ∨ ∃n ∈ N¬Aqf (k, n).

In fact, this is the weakest form of LEM sufficient here and - under

general assumptions on the proof - for all theorems of the form

∀k ∈ N ∃n ∈ N ∀m ∈ NBqf (k, n,m).

As a result a witness is not computable in the parameter k but only

learnable with a number of mind changes bounded as function B(k) in

k , where B(k) corresponds to the number of instances of Σ0
1-LEM used.
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Effective (B,L)-learnability (K./Safarik 2014)

Under very general assumptions on the proof (but not always) one gets

bounds on the no-counterexample interpretation of the form

(f2 ◦ g̃ ◦ f1)B(k)(0)

with computable B, f1, f2, where f2 ◦ f1 essentially is the learning

procedure L applied and B(k) is the number of mind changes:

∃nN∀mN Aqf (k, n,m)

is (B,L)-learnable if

∃i ≤ B(k) ∀m Aqf (k, ci ,m), where

c0 := 0,

ci+1:=

L(m, k), for the m with ¬Aqf (k, ci ,m) ∧ ∀y < m Aqf (k, ci , y) if ∃

ci , otherwise.
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Effective fluctuation bounds

Consider the special case for statements expressing the Cauchy property

of a sequence.

In the case of monotone sequences (xn) ⊂ [0,C ] one always has

the trivial fluctuation bound 2k · C .

This might suggest that effective learnability always gives effective

fluctuation bounds which, however, is false.
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Hierarchy of quantitative Cauchy statements

1. rate ρ of convergence⇒

2. bound (b := ρ) on the number of fluctuations⇒

3. (B, L)-learnability⇒

4. rate of metastability Ω.

Proposition (K./Safarik,2014)

The hierarchy is strict in the sense that the existence of computable

witnesses for level n not even follows from primitive recursive witnesses

for level n − 1 (2 ≤ n ≤ 4).
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A Modular Approach: Proof Interpretations

Interpret the formulas A in P : A 7→ AI ,

Interpretation CI contains the additional information,

Construct by recursion on P a new proof PI of CI .

In particular: solve modus ponens problem:

AI , (A→ B)I

B I
.
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Constructive reasoning: BHK-interpretation

This interpretation is an informal attempt to define a constructive

semantics for the logical operations and quantifiers:

(i) There is no proof for ⊥.

(ii) A proof of A ∧ B is a pair (q, r) of proofs, where q is a proof of A
and r is a proof of B.

(iii) A proof of A ∨ B is a pair (n, q) consisting of an integer n and a

proof q which proves A if n = 0 and resp. B if n = 1.

(iv) A proof p of A→ B is a construction which transforms any

hypothetical proof q of A into a proof p(q) of B.

(v) A proof of ∀x A(x) is a construction which produces for every

element d of the domain a proof p(d) of A(d).

(vi) A proof p of ∃x A(x) is a pair (d , q), where d is an element of the

domain and q is a proof of A(d).
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Example: a simple case of the modus ponens

Consider proof
A , A→ B

B
,

where (for quantifier-free, decidable Aqf ,Bqf )

A :≡ ∀k ∃n ∀m Aqf (k, n,m) and B :≡ ∀i ∃j Bqf (i , j).

Example: Suppose we have constructive proof of:

∀k ∃n ∀m (|rn − rn+m| ≤ 2−k)→ ∀i ∃j (sj ≤ 2−i ),

where (rn), (sn) are a nonincreasing sequences in [0, 1].

By BHK there is a functional Φ : NN × N→ N such that

∀f ∈ NN, i ∈ N
(
∀k,m Aqf (k, f (k),m)→ Bqf (i ,Φ(f , i))

)
.

Problem: useless if no computable f satisfies the premise!
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Solution: use still higher types

Gödel’s famous functional (‘Dialectica’) interpretation allows to treat

even noneffective proofs of A→ B with much stronger result:

∀Y
(
∀k, g Aqf (k,Y (k, g), g(Y (k, g)))→ Bqf (i ,Ω(i ,Y ))

)
.

Important: Computable (usually low complexity) Y satisfying the

premise can be extracted even from a nonconstructive proof of A!

x : first order

g : second order

Y : third order

Ω: fourth order.

As the formulas interpreted are getting increasingly logically complex,

arbitrary high finite order functionals are needed to analyze the flow of

information in the proof.
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The above analysis of

∀k ∃n ∀m (|rn − rn+m| ≤ 2−k)→ ∀i ∃j (sj ≤ 2−i ),

where (rn), (sn) are a nonincreasing sequences in [0, 1], has applications

even for sn := rn :

From an (even noneffective) proof that the noneffectively convergent

sequence (rn) converges to 0 one extracts a level-4 functional Ω which

transforms the given (see above) rate of metastability Φ for (rn) into an

effective rate of convergence of rn towards 0.

Roughly: Ω computes in the parameter i a counterfunction gi and applies

Φ to some modified i ′ and gi ′ :

Ω(i ,Φ) := Φ(i ′, gi ′).

Many new rates of convergence in nonlinear analysis have been obtained

in this way!
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Roughly: Ω computes in the parameter i a counterfunction gi and applies

Φ to some modified i ′ and gi ′ :

Ω(i ,Φ) := Φ(i ′, gi ′).

Many new rates of convergence in nonlinear analysis have been obtained

in this way!
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An application: polynomial rate in Bauschke’s

solution of ‘zero displacement conjecture’

Consider a Hilbert space H and nonempty closed and convex subsets

C1, . . . ,CN ⊆ H with metric projections PCi , define

T := PCN ◦ . . . ◦ PC1 . In 2003 Bauschke proved the ‘zero displacement

conjecture’:

‖T n+1x − T nx‖ → 0 (x ∈ H).

Previously only known for N = 2 or Fix(T ) 6= ∅ (or even⋂N
i=1 Ci 6= ∅) or Ci half spaces etc.

Proof uses abstract theory of maximal monotone operators: Minty’s

theorem, Brezis-Haraux theorem, Rockafellar’s maximal monotonicity and

sum theorems, Bruck-Reich theory of strongly nonexpansive mappings,

conjugate functions, normal cone operator...).

Logical metatheorems guarantee an effective rate of convergence which

only depends on ε,N, b ≥ ‖x‖,K ≥ ‖ci‖ for some ci ∈ Ci

(1 ≤ i ≤ N).
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Theorem (K. FoCM 2019)

Φ(ε,N, b,K) :=

⌈
18b + 12α(ε/6))

ε
− 1

⌉ ⌈(
D

ω(D, ε̃)

)⌉
is a rate of asymptotic regularity in Bauschke’s result, where

ε̃ :=
ε2

27b + 18α(ε/6)
, D := 2b + NK , ω(D, ε̃) :=

1

16D
(ε̃/N)2.

α(ε) :=
(K 2 + N3(N − 1)2K 2)N2

ε
.

Here b ≥ ‖x‖ and K ≥
(∑N

i=1 ‖ci‖2
) 1

2

for some

(c1, . . . , cN) ∈ C1 × . . .× CN .
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