Processes

University of Aveiro

Object

Object
Neural plasticity, the brain's ability to adapt to new experiences, is one
of the most important concepts in neuroscience. **Object**
ticity, the brain's ability to adapt to new experiences, is one
of the most important concepts in neuroscience.
explore the role of timing and synchronization of external

Object
Meural plasticity, the brain's ability to adapt to new experiences, is one
of the most important concepts in neuroscience.
We aim to explore the role of timing and synchronization of external
timuli in shaping syn **Steady**
Strimulti in shaping synaptic model in shaping synaptic model in shaping synaptic modifications. These factors play a crucial
role in optimizing learning processes and cognitive rehabilitation. Figural plasticity, the brain's ability to adapt to new experiences, is one of the most important concepts in neuroscience.
Ve aim to explore the role of timing and synchronization of external muli in shaping synaptic modi

Historical Context

Cajal,1894

wire together

stimulation Konorski, 1948

Summary

- Summary

► Exploration of neural plasticity and environmental

interactions interactions ► Exploration of neural plasticity and **environmental**

interactions

► Emphasis on timing and synchronization in

shaping synaptic changes.
- **Summary**
Exploration of neural plasticity and **c**
interactions
Emphasis on timing and synchroni
shaping synaptic changes. ► Exploration of neural plasticity and **environmental**

interactions

► Emphasis on timing and synchronization in

shaping synaptic changes.

► Critical role of temporal factors in learning

and cognitive development.
- and cognitive development. ► Emphasis on thing and sylemonization in
shaping synaptic changes.
► Critical role of temporal factors in learning
and cognitive development.
► Applications in cognitive rehabilitation and
education.
- education.

Timing architecture **Timing architect

1 Environment, 2 Le

epigenetic

imuli architecture Ret**

epigenetic

Stimuli architecture

**Cture
2 Learning, synaptic
changes
Neural architecture** changes

Neural architecture

We will try to propose a perspective focused on Time Factor

Timing architecture

1

Impact of the environment on neural plasticity, from cellular influences during development of neural system to epigenetic ones
with particular attention to changes of dendritic spines. Timing architecture

1

pact of the environment on neural plasticity, from cellular

nees during development of neural system to epigenetic ones

with particular attention to changes of dendritic spines.

2

2

How the environment continues to affect neuronal changes through learning, emphasizing the importance of timing and the synchronization of external stimuli and synaptic modifications.

This study suggests that understanding the timing and coherence of synaptic activations is crucial for optimizing learning and improving cognitive rehabilitation strategies.

Timing architecture

Impact of the environment on neural plasticity from cellular influences to epigenetic ones

Changes in dendritic spines

1 The Role of
the Environment
in Brain
Development 1 The Role of
the Environment
in Brain
Development Development **Faction Controllering School Series and Environment

Revelopment

Neural development

Neural development

influenced by both genetic

factors and environmental

stimuli.**

- stimuli.
-
- Pruning eliminates efficiency.

1.1 Glial Cells and
Environmental
Influence **Environmental Influence 1 Glial Cells and

intronmental

France

France de Considered mere support

structures, play an active role**

Glial cells, once

considered mere support

structures, play an active role

in guiding neuron migration.

Environmental stimuli can

modulate their activity

through epigenetic

mechanisms, highlighting the

deep connecti mechanisms, highlighting the Glial cells, once

considered mere support

structures, play an active role

in guiding neuron migration.

Environmental stimuli can

modulate their activity

through epigenetic

mechanisms, highlighting the

deep connecti Uniar dens, once

considered mere support

structures, play an active role

in guiding neuron migration.

Environmental stimuli can

modulate their activity

through epigenetic

mechanisms, highlighting the

deep connectio development

1.2 Neural Darwinism

- Neural Darwinism

(Edelman, 1987):

Neurons are selected

based on their utility.

Useful neural circuits are

reinforced, while others

are pruned.

The brain refines its
-
- (Edelman, 1987):

Neurons are selected

based on their utility.

Useful neural circuits are

reinforced, while others

are pruned.

The brain refines its

synaptic architecture

through experience and

environmental

inter environmental interaction.

1.3 Epigenetics and 1.3 Epigenetics and
Long-Term Brain
Development Development **1.3 Epigenetics and

Long-Term Brain

Development

• Epigenetics modifies

gene expression without

changing DNA B Epigenetics and

ng-Term Brain

welopment

Epigenetics modifies

gene expression without

changing DNA

sequences.

Environmental**

- sequences.
- Environmental Epigenetics modifies
gene expression without
changing DNA
sequences.
Environmental
factors, such as
maternal stress, can
leave lasting imprints
on brain
development.
Epigenetic "marks" development. gene expression without

changing DNA

sequences.

• Environmental

factors, such as

maternal stress, can

leave lasting imprints

on brain

development.

• Epigenetic "marks"

influence how neurons

connect, affecting changing DNA

sequences.

Environmental

factors, such as

maternal stress, can

leave lasting imprints

on brain

development.

Epigenetic "marks"

influence how neurons

connect, affecting

learning and memory. sequences.

Environmental

factors, such as

maternal stress, can

leave lasting imprints

on brain

development.

Epigenetic "marks"

influence how neurons

connect, affecting

learning and memory.
- learning and memory.

1.4 Plasticity in
Mental Health and
Learning 1.4 Plasticity in
Mental Health and
Learning **Learning**

- health.
-
- connections.
- Synaptic pruning plays a key role in mental
health.
Over-pruning is linked to schizophrenia,
while under-pruning is connected to autism.
Plasticity supports both cognitive and
motor learning by adjusting neural
connections Synaptic pruning plays a key role in mental
health.
Over-pruning is linked to schizophrenia,
while under-pruning is connected to autism.
Plasticity supports both cognitive and
motor learning by adjusting neural
connections Bynaphe praimig plays a key fole in included
health.
Over-pruning is linked to schizophrenia,
while under-pruning is connected to autism.
Plasticity supports both cognitive and
motor learning by adjusting neural
connection hippocampal in the control of the control of the control of the control of the Phasticity supports both cognitive and motor learning by adjusting neural

connections.

Chronic stress negatively impacts the hippocampus, red Over-pruning is linked to schizophrenia,
while under-pruning is connected to autism.
Plasticity supports both cognitive and
motor learning by adjusting neural
connections.
Chronic stress negatively impacts the
hippocampus, while under-pruning is connected to autism.
Plasticity supports both cognitive and
motor learning by adjusting neural
connections.
Chronic stress negatively impacts the
hippocampus, reducing synaptic
plasticity and impairi

1.5 Ongoing Plasticity Throughout Life

-
- 1.5 Ongoing Plasticity Throughout Life
► Neural plasticity continues throughout adulthood.
► Experiences strengthen some synapses while weakening others. **1.5 Ongoing Plasticity Throughout Life**

► Neural plasticity continues throughout adulthood.

► Experiences strengthen some synapses while weakening others.

S Ongoing Plasticity Infoughout Life

The plasticity continues throughout adulthood.

Feriences strengthen some synapses while weakening others.

Learning and memory rely on synaptic modifications

Spike-Timing-Dependent I plasticity continues throughout adulthood.

ences strengthen some synapses while weakening others.

arning and memory rely on synaptic modifications

Spike-Timing-Dependent Plasticity STDP

Long term potentiation - LTP icity continues throughout adulthood.

strengthen some synapses while weakening others.

and memory rely on synaptic modifications
 - Timing-Dependent Plasticity STDP
 Long term potentiation - LTP
 Long term Depress Strengthen some synapses while weakening others.

and memory rely on synaptic modifications
 Timing-Dependent Plasticity STDP
 Long term potentiation - LTP
 Long term Depression - LTD.

Timing architecture

Impact of the environment on neural plasticity, from cellular influences during development of neural system to epigenetic ones with particular attention to changes of dendritic spines.

1

2^o

How the environment continues to affect neuronal changes through learning, emphasizing the importance of timing and the synchronization of external stimuli and synaptic modifications.

This study suggests that understanding the timing and coherence of synaptic activations is crucial for optimizing learning and improving cognitive rehabilitation strategies.

Timing architecture

How the environment continues to affect neuronal changes through learning

The importance of timing and the synchronization of stimuli and synaptic modifications

2 The Role of Synchronicity in **Learning**

- **Synchronicity in
Learning
• When external stimuli
are presented in close
sequence, the brain
strengthens the association
between them.
• This temporal Learning**

• When external stimuli

are presented in close

sequence, the brain

strengthens the association

between them.

• This temporal

coherence not only

strengthens neural
- experiences.

2.1 Hebbian **2.1 Hebbian
Learning and
Synaptic Strength** 2.1 Hebbian
Learning and
Synaptic Strength

Synaptic Stellgule
 Example 1981
 Example 2018
 Example 2019
 Example Friedrich Hebbian theory explains how
neurons that fire together form
stronger connections, making
synaptic transmission more
efficient. Repeated synchronized
activation strengthens the neural
pathways involved, enhancing FREE THE HERE THE HERE THE HERE THE STRENGTH STRENG • Hebbian theory explains how
neurons that fire together form
stronger connections, making
synaptic transmission more
efficient. Repeated synchronized
activation strengthens the neural
pathways involved, enhancing
learning • Hebbian theory explains how
neurons that fire together form
stronger connections, making
synaptic transmission more
efficient. Repeated synchronized
activation strengthens the neural
pathways involved, enhancing
learning

2.2 Timing and **Synaptic Plasticity**

Spike-Timing-Dependent **Plasticity**
 Plasticity

The synchronization of

neural activations is essential for

learning and memory formation.

Spike-Timing-Dependent

Plasticity (STDP) demonstrates

that precise timing between

stimuli and syna **PLASTICITY**

The synchronization of

The synchronization of

The spike

Learning and memory formation.

Spike-Timing-Dependent

Plasticity (STDP) demonstrates

that precise timing between

stimuli and synaptic responses
 The synchronization of

The synchronization of

neural activations is essential for

learning and memory formation.

Spike-Timing-Dependent

Plasticity (STDP) demonstrates

that precise timing between

stimuli and synaptic The synchronization of

neural activations is essential for

learning and memory formation.

Spike-Timing-Dependent

Plasticity (STDP) demonstrates

that precise timing between

strengthens neural connections

(LTP), while The synchronization of

neural activations is essential for

learning and memory formation.

Spike-Timing-Dependent

Plasticity (STDP) demonstrates

that precise timing between

stimuli and synaptic responses

strengthens meural activations is essential for

learning and memory formation.

Spike-Timing-Dependent

Plasticity (STDP) demonstrates

that precise timing between

stimuli and synaptic responses

strengthens neural connections

(LTP

High Frequency Input

Short Term Facilitation

Increased presynaptic a. neurotransmitter release

Repetitive High Frequency Input

Long Term Potentiation

- Strengthened, more o. efficient synapses
- Synaptogenesis
- Post-synaptic AMPA ۰. phosphorylation and increased expression
- Post-Synaptic NMDA ٠ subunit changes

 (b)

Long Term Depression

- Weakened, less efficient synapses
- Synaptic pruning ٠
- Post-synaptic AMPA ٠ dephosphorylation and decreased expression
- Post-synaptic NMDA ш subunit changes

2.2 Basic principles of LTP

- LTP is a process by which synaptic strength between two neurons increases in response to repetitive, high-frequency neuronal activity.
- LTP is activated when a pre-synaptic neuron stimulates a post-synaptic neuron with a high rate of activity. This stimulation increases the influx of calcium within the postsynaptic neuron, activating a series of chemical reactions (such as protein phosphorylation and the production of new receptors), which strengthen the synapse.

2.2 Basic principles of LTD

- LTD occurs when the synapse is stimulated repeatedly, but at a low frequency (usually between 1 and 5 Hz), or as a result of specific patterns of neuronal activity.
- This low-frequency stimulation leads to a reduction in the strength of the synapse and the likelihood that the postsynaptic neuron will respond to future stimuli from the presynaptic neuron.

LTP e LTD

J. Walker and M. Detloff Plasticity in Cervical Motor Circuits following Spinal Cord Injury and Rehabilitation, Biology 2021

2.3 Timing Windows and Causality in Neural Responses **2.3 Timing Windows

and Causality in

Neural Responses

► Neural timing occurs within

windows of milliseconds. S Timing Windows
d Causality in
ural Responses
Neural timing occurs within
windows of milliseconds.**

-
- **Causality in

Example 18 Exponses**

Neural timing occurs within

windows of milliseconds.

When neurons activate

within this window, their

connection strengthens. connection strengthens.
- perception of milliseconds.

When neurons activate

within this window, their

connection strengthens.

Timing shapes the brain's

perception of causality:

repeated, closely timed

activations suggest a causal When neurons activate
When neurons activate
within this window, their
connection strengthens.
Timing shapes the brain's
perception of causality:
repeated, closely timed
activations suggest a causal
link between events. When neurons activate
within this window, their
connection strengthens.
Timing shapes the brain's
perception of causality:
repeated, closely timed
activations suggest a causal
link between events. When neurons activate
within this window, their
connection strengthens.
Timing shapes the brain's
perception of causality:
repeated, closely timed
activations suggest a causal
link between events.

2.3 Learning and the Synchronization of Neural Networks

2.3 Learning and the

Synchronization of

Neural Networks

Larger neural networks rely on

synchronized firing to form

"neural maps" that represent

learned behaviors. Temporal

coherence across these **Synchronization of

Neural Networks

Larger neural networks rely on

synchronized firing to form

"neural maps" that represent

learned behaviors. Temporal

coherence across these

networks is key to learning, as Neural Networks**

Larger neural networks rely on

synchronized firing to form

"neural maps" that represent

learned behaviors. Temporal

coherence across these

networks is key to learning, as

the brain associates close Larger neural networks

Larger neural networks rely on

"neural maps" that represent

learned behaviors. Temporal

coherence across these

metworks is key to learning, as

the brain associates closely

timed stimuli to for Larger neural networks rely on
synchronized firing to form
"neural maps" that represent
learned behaviors. Temporal
coherence across these
networks is key to learning, as
the brain associates closely
timed stimuli to form Larger neural networks rely on
synchronized firing to form
"neural maps" that represent
learned behaviors. Temporal
coherence across these
networks is key to learning, as
the brain associates closely
timed stimuli to form Larger neural networks rely on
synchronized firing to form
"neural maps" that represent
learned behaviors. Temporal
coherence across these
networks is key to learning, as
the brain associates closely
timed stimuli to form synchronized iring to form

"neural maps" that represent

learned behaviors. Temporal

coherence across these

networks is key to learning, as

the brain associates closely

timed stimuli to form a

cohesive memory +

(Tan

Timing architecture

1

Impact of the environment on neural plasticity, from cellular influences during development of neural system to epigenetic ones with particular attention to changes of dendritic spines.

2

How the environment continues to affect neuronal changes through learning, emphasizing the importance of timing and the synchronization of external stimuli and synaptic modifications.

3

This study suggests that understanding the timing and coherence of synaptic activations is crucial for optimizing learning and improving cognitive rehabilitation strategies.

Timing architecture

3

Understanding the timing and coherence of synaptic activations is crucial for optimizing learning and improving cognitive rehabilitation strategies.

**3 Voluntary Learning
and
A fergers** and **Agency**

3.1 Agency and
Spike-Timing-
Dependent Plasticity Spike-Timing-Dependent Plasticity

- Agency is the sense that I am the cause or author of a movement. Babies develop early this feeling by perceiving the contingency between afferent (sensor) and efferent (motor) information.
- The biological STDP that synchronizes the neural dynamics almost everywhere in the central nervous system, constitutes a good algorithm to detect contingency in sensorimotor networks.
- The coherence or the dissonance in the sensorimotor information flow imparts then the agency level.

3.1 Agency and
Spike-Timing-
Dependent Plasticity Spike-Timing-Dependent Plasticity

agency?

-
- agency.

3.2 Practical Implications of a timing framework

- Lattriangleright in the University of the University of Applications in education: Enhancing learning by
► Applications in education: Enhancing learning by aligning teaching methods with neural timing. **ractical Implications of a timing framework**
Applications in education: Enhancing learning by
aligning teaching methods with neural timing.
- \nPractional Implications of a timing framework\nApplications in education: Enhancing learning by aligning teaching methods with neural timing.\nApplications in Cognitive rehabilitation: Adopting timing-based interventions can improve recovery from cognitive deficits.\n **Tractical implications of a urning framework**
Applications in education: Enhancing learning by
aligning teaching methods with neural timing.
Applications in Cognitive rehabilitation: Adopting
timing-based interventions ca Applications in education: Enhancing learn
aligning teaching methods with neural timin
Applications in Cognitive rehabilitation: A
timing-based interventions can improve rece
cognitive deficits. ► Applications in education: Enhancing learning by
aligning teaching methods with neural timing.

► Applications in Cognitive rehabilitation: Adopting

timing-based interventions can improve recovery from

cognitive defic aligning teaching methods with neural timing.
Applications in Cognitive rehabilitation: Adopting
timing-based interventions can improve recovery from
cognitive deficits.
Stress management: Reducing stress preserves neural

-

Conclusion

Neural plasticity is a dynamic process shaped by environmental and temporal factors.

Synchronization between external stimuli and neural activations optimizes learning and memory.

Understanding these processes can improve educational and rehabilitation strategies, enhancing cognitive health and performance.

Thank you

Thank you
CIFMA – SEFM 2024 University of Aveiro Thank you
CIFMA – SEFM 2024 University of Aveiro
Fabrizia Giulia Garavaglia, Marco Giunti, Giuseppe Sergioli
University of Cagliari CIFMA – SEFM 2024 University of Aveiro
Fabrizia Giulia Garavaglia, Marco Giunti, Giuseppe Sergioli
University of Cagliari

giuliafabrizia@gmail.com