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Neuromorphic 
Engineering (NE)

• Definition: An interdisciplinary field 
bridging neuroscience, computer 
science, and engineering.

• Objective: Design ANNs that mimic 
biological systems in adaptability, 
function, and efficiency.

3



Deep Learning Models and Cognition

• Role of Deep Learning in Cognitive Science
• Potential and limitations in modeling cognition

• Strengths: Handles vast data, pattern recognition, generalization.
• Limitations: Interpretation, data dependence, and higher-order cognitive 
tasks.
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The Neuromorphic Engineering Project

• Comparison between Biological Neural Networks and ANNs:
• Adaptation and efficiency vs. artificial imitation.

• Question: Are artificial and biological systems converging?
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The Symbol Grounding Problem

• Symbol Grounding Problem: How do symbols get their meanings?
“The symbol grounding problem is the problem of how to make the semantic 
interpretation of a formal symbol system intrinsic to the system, rather than just 
parasitic on the meanings in our heads in anything but other meaningless symbols”
(Harnad, 1990)

Solutions: symbolic representations must be grounded bottom-up in nonsymbolic
representations of two kinds: (1) iconic representations, which are analogues of 
the proximal sensory projections of distal objects and events, and (2) categorical 
representations, which are learned and innate feature detectors that pick out the 
invariant features of object and event categories from their sensory projections. 
(Harnad, 1990)
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The Vector Grounding Problem

• Vector Grounding Problem: LLMs use vectors as numerical representations of text tokens based on 
statistical relationships. LLMs struggle to connect their internal representations (vectors) to the real-
world. (Coehlo Mollo and Millière, 2023)

• Fine-tuned with Reinforcement Learning from Human Feedback (RLHF), possess the necessary 
features to overcome the Vector Grounding Problem, as they stand in the requisite causal-historical 
relations to the world that underpin intrinsic meaning.

• “We also argue that, perhaps unexpectedly, multimodality and embodiment are neither necessary nor 
sufficient conditions for referential grounding in artificial systems” (Coehlo Mollo and Millière, 2023)

• Current AI Challenges: Lack of intrinsic connection to real-world meanings despite human-like outputs.

7



Introduction to the 
Morphic Problem

• Challenge of replicating biological 
neural systems’ adaptability in artificial 
neural networks (ANNs).

• Importance of Morphic Relation: Aims 
to capture structure, function, and 
dynamic correspondences between 
biological and artificial neural systems.
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Addressing the Morphic Problem

• Biological Neural Network Attributes: Interaction with the real world, sensory 
experiences, evolutionary refinement.

• Contrast with ANNs: Training on isolated datasets lacking sensory richness.

• NE Goal: Create embodied cognition and multimodal learning in ANNs.
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The Morphic Problem in ANNs 
(MPANNs)

• It is a generalisation issue of VGP: we want optimised ANNs able to 
mimic human brain biology, but they are structurally disconnected from 
the real world.

• Can the morphic program succeed in optimising ANNs without somehow 
embedding them in a world that allows for meaningful interactions and 
grounding of representations?
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Criteria for Morphic Relations in ANNs

1. Structural Correspondence
2. Functional Equivalence
3. Dynamic Coherence
4. Contextual Integration
5. Robustness and Resilience

11



Five Key Criteria for MPANNs

• (SC) ANNs must have a structural framework that reflects biological neural systems, including neurons 
and synapses’ basic components and interconnections.

• (FE) ANNs must replicate essential functional operations, like learning through synaptic plasticity and 
information processing via spike-timing dynamics.

• (DC) Temporal dynamics in ANNs should mirror those in biological systems, particularly in adaptive 
responses over time to stimuli.

• (CI) Both systems should be integrated into their environments similarly, with neural networks 
interacting in an ecosystem or framework similar to biological networks.

• (RR) The morphic relation requires robustness and resilience in similar ways, so ANNs should 
withstand noise, damage, or variability like biological networks.
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Methodological Challenges

• Challenges in Comparing DNNs and Human Cognition:
• Differences in training and experiences.
• Difficulty in capturing cognitive complexity and environmental 

interactions.

• Approach: Design more holistic and interactive training environments.
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How to deal with 
MPANNS?

• Foster the morphism

 or

• Cut off the grounding relation 

 (Ocham’s AI Razor?)
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Conclusion

• Morphic Problem: Technical and conceptual challenges.
• Future Outlook for Neuromorphic Engineering: Moving towards more 
human-like AI
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Thank you for listening!
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