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Reinforcement learning

In reinforcement learning (RL), an agent interacts with an
environment.

1. The agent takes an action (trying to maximize total reward).

2. The environment responds with an observation and a
numerical reward.

3. Goto 1.

Thus, RL models what Fabrizia called conditioned learning. The
observations in RL can be thought of as what Philipp called states.
The environment could even involve human interaction, as in
Antonio’s talk.



A probability paradox: The Garden of Eden

▶ An agent must spend eternity in the Garden of Eden.

▶ If it never takes the forbidden action, total reward = 1.

▶ If it ever takes the forbidden action, total reward drops to 0
(no way to recover).

▶ Agent A, every turn, randomly takes the forbidden action with
probability 0.0001%.

▶ Agent B, every turn, randomly takes the forbidden action with
probability 99.999%.

Paradox: Agents A and B both have total expected reward 0.



Solution using non-Archimedean probability

The Garden-of-Eden probability paradox can be solved by using
nonstandard probability where infinitesimals are allowed. A and B
both get positive infinitesimal total expected rewards, but A’s
infinitesimal total expected reward is bigger than B’s.



Legg-Hutter intelligence

The Legg-Hutter intelligence of a reinforcement learning agent π is

Υ(π) =
∑
µ

2−K(µ)V π
µ ,

where:

▶ µ ranges over suitably well-behaved computable reinforcement
learning environments.

▶ K (µ) is the Kolmogorov complexity of µ (a measure of µ’s
computational complexity).

▶ V π
µ is the total expected reward π would get in µ.

This definition attempts to avoid all sorts of biases (such as the
nationality bias from Leonardo’s talk). By summing over all µ, we
include rich environments with what Giovanni called sensory
richness.



Legg-Hutter intelligence

The Legg-Hutter intelligence of a reinforcement learning agent π is

Υ(π) =
∑
µ

2−K(µ)V π
µ ,

where:

▶ µ ranges over suitably well-behaved computable reinforcement
learning environments.

▶ K (µ) is the Kolmogorov complexity of µ (a measure of µ’s
computational complexity).

▶ V π
µ is the total expected reward π would get in µ.

This definition attempts to avoid all sorts of biases (such as the
nationality bias from Leonardo’s talk). By summing over all µ, we
include rich environments with what Giovanni called sensory
richness.
But: K (µ) and thus Υ(π) depend implicitly on the background
choice of a universal Turing machine.



Promoting a probability paradox to an intelligence paradox

Carefully choosing the background UTM, we can arrange that for
certain agents π, including usually-well-behaved A and
usually-bad-behaved B, all terms of

Υ(π) =
∑
µ

2−K(µ)V π
µ

cancel in pairs, except where µ = Garden of Eden.

▶ Then the intelligence of A and B is determined entirely by
their expected Garden-of-Eden reward.

▶ So Υ(A) = Υ(B) = 0. The paradox appears as an intelligence
paradox, not just a probability paradox.



Solving the intelligence paradox with nonstandard analysis

▶ We show that the intelligence measurement Garden-of-Eden
paradox can be solved by measuring intelligence using the
hyperreal numbers, a number system allowing for infinities
and infinitesimals.

▶ This is evidence that R might be an inadequate number
system for measuring intelligence of reinforcement learning
agents.



Formal details: Duality

▶ If π is an RL agent, the dual agent π is the agent obtained
from π by multiplying all rewards by −1.

▶ If µ is an RL environment, the dual environment µ is the
environment obtained from µ by multiplying all rewards by
−1.

▶ π is self-dual if π = π.

▶ µ is self-dual if µ = µ.



Algebraic properties of duality

Suppose π is an RL agent and µ is an RL environment.

▶ π = π, µ = µ.

▶ V π
µ = −V π

µ .

▶ V π
µ = −V π

µ .

▶ If π and µ are both self-dual: V π
µ = 0.



Symmetric universal Turing machines

A universal Turing machine is symmetric if:

▶ For every RL environment µ, K (µ) = K (µ).

Requiring the UTM to be symmetric solves an inherent bias in
reinforcement learning. It is arbitrary whether the numbers from
the environment are “rewards” (positive is good) or “costs”
(negative is good). In RL, we arbitrarily choose them to be
“rewards”. This introduces an implicit bias. Symmetric UTMs fix
this bias, in the context of Legg-Hutter intelligence measurement.



Two theorems by Alexander and Hutter

▶ Theorem: There is an effective procedure for turning UTMs
into symmetric UTMs.

▶ Theorem: If the implicit background UTM is symmetric, then
for any agent π, Υ(π) = −Υ(π).

▶ Corollary: If the implicit background UTM is symmetric and π
is self-dual, then Υ(π) = 0.

(That corollary confirms what Graham said in his talk: not
everything is intelligent.)



Almost-symmetric UTMs

Assume µ is an environment, µ ̸= µ.

▶ Definition: A UTM is almost symmetric except at µ if
K (µ) ̸= K (µ) but K (ν) = K (ν) for all ν ̸∈ {µ, µ}.

▶ Theorem: There is an effective procedure for turning UTMs
into UTMs that are almost symmetric except at µ. In fact, we
can even arrange that K (µ) = 1 and K (µ) = 2.

▶ Theorem: If the background UTM is almost symmetric except
at µ, and K (µ) = 1 and K (µ) = 2, and if π is a self-dual
agent, then Υ(π) = 1

4V
π
µ .



Garden-of-Eden probability paradox as an intelligence
measurement paradox

▶ If A is the agent who randomly takes the forbidden action in
the garden of Eden with probability 0.0001% every turn, and
otherwise takes a fixed non-forbidden action, and similar for B
taking the forbidden action with probability 99.999%, then A
and B are self-dual (because they ignore rewards).

▶ Thus, if we arrange that the UTM is almost-symmetric except
for the Garden of Eden environment, then Υ(A) and Υ(B)
depend only on the expected total reward A and B get in the
Garden of Eden. We end up with Υ(A) = Υ(B), even though
in a sense, A performs better in the only environment that
counts.



Hyperreal-valued Legg-Hutter intelligence

We propose a variation on Legg-Hutter intelligence, namely:

Υ̂(π) =

[
n 7→

∑
µ

2−K(µ)V π
µ,n,

]

the hyperreal number represented by the function sending each
n ∈ N to

∑
µ 2

−K(µ)V π
µ,n, where V π

µ,n is the expected reward π
would get after n turns in environment µ. This works assuming we
restrict attention to environments with the property that V π

µ,n

never goes outside of [−1, 1].

▶ Theorem: For any π, the difference between Υ̂(π) and Υ(π)
is at most infinitesimal.

▶ Theorem: In the context of the Garden-of-Eden paradox,
Υ̂(A) > Υ̂(B) (both are positive infinitesimal).



An Electoral Introduction to Hyperreal Numbers

Suppose we wish to answer True/False questions about functions
f , g : N → R. Questions like, “Is f bigger on average than g?”



An Electoral Introduction to Hyperreal Numbers

Suppose we wish to answer True/False questions about functions
f , g : N → R. Questions like, “Is f bigger on average than g?”

▶ The electoral approach: let each n ∈ N cast a vote!

▶ For example: If f (25) > g(25) then 25 votes that f is bigger
on average than g . If f (60) = g(60) then 60 votes that f is
not bigger on average than g .

But how can we decide an election with ∞ voters?



Majorities

What axioms should a notion of majority of ∞ voters satisfy?

▶ (Properness) ∅ is not a majority.

▶ (Monotonicity) If X ⊆ Y and X is a majority, then Y is a
majority.

▶ (Maximality, “Someone must win”) Either X is a majority, or
X c is a majority.



A counter-intuitive axiom

If the voters vote...

▶ “f is bigger on average than g”, and

▶ “g is bigger on average than h”, ...

...then they had certainly better vote...

▶ “f is bigger on average than h”!



A counter-intuitive axiom

If the voters vote...

▶ “f is bigger on average than g”, and

▶ “g is bigger on average than h”, ...

...then they had certainly better vote...

▶ “f is bigger on average than h”!

This leads to a 4th, counter-intuitive axiom:

▶ (∩-closure) If X and Y are majorities, then X ∩ Y is a
majority.



Avoiding a trivial solution

One trivial way to define majorities: choose some n ∈ N and
declare n a dictator. Declare that whoever n votes for, wins.
Let’s rule out this trivial solution.

▶ (Non-dictatorialness) If |X | = 1 then X is not a majority.



Ultrafilters

▶ Definition: A set of subsets of N (thought of as majorities) is
an ultrafilter if it satisfies Properness, Monotonicity,
Maximality, and ∩-closure.

▶ Definition: An ultrafilter is free if it also satisfies
Non-dictatorialness.

▶ Theorem: Free ultrafilters exist.



Deciding elections using ultrafilters

Fix a free ultrafilter U (call its elements majorities). If the natural
numbers vote in an election between candidates C1 and C2,
declare:

▶ C1 wins if {n ∈ N : n votes for C1} is a majority.

▶ C2 wins if {n ∈ N : n votes for C2} is a majority.

By the Maximality axiom, there is a winner. By ∩-closure and
Properness, there is at most one winner.



The hyperreals

▶ For all f , g : N → R, declare f ∼ g if and only if a majority
votes that f (n) = g(n). In other words, f ∼ g iff
{n ∈ N : f (n) = g(n)} is a majority.

▶ Lemma: ∼ is an equivalence relation. For each f : N → R, let
[f ] be f ’s equivalence class mod ∼. These equivalence classes
are called hyperreal numbers.

▶ Definition: For f , g : N → R, define [f ] + [g ] = [f + g ],
[f ] · [g ] = [f · g ]. Declare [f ] < [g ] iff {n ∈ N : f (n) < g(n)}
is a majority.

▶ Theorem: This makes the hyperreal numbers an ordered field
extension of R.



Examples of Hyperreal Numbers

▶ [n 7→ 5] is the hyperreal number 5.

▶ [n 7→ n] is an infinite hyperreal number.

▶ [n 7→ n2] is a larger infinite hyperreal number.

▶ [n 7→ 1/(n + 1)] is an infinitesimal hyperreal number.



Hyperreal-valued Legg-Hutter intelligence

We propose a variation on Legg-Hutter intelligence, namely:

Υ̂(π) =

[
n 7→

∑
µ

2−K(µ)V π
µ,n,

]

the hyperreal number represented by the function sending each
n ∈ N to

∑
µ 2

−K(µ)V π
µ,n, where V π

µ,n is the expected reward π
would get after n turns in environment µ. This works assuming we
restrict attention to environments with the property that V π

µ,n

never goes outside of [−1, 1].

▶ Theorem: For any π, the difference between Υ̂(π) and Υ(π)
is at most infinitesimal.

▶ Theorem: In the context of the Garden-of-Eden paradox,
Υ̂(A) > Υ̂(B) (both are positive infinitesimal).



Conclusion

▶ Certain probability paradoxes become Legg-Hutter intelligence
measurement paradoxes if we choose the background universal
Turing machine very carefully.

▶ We conjecture that such paradoxes are present in Legg-Hutter
intelligence even with more familiar universal Turing
machines, but it is hard to exhibit them because of the
intractibility of the infinite sum defining Υ(π).

▶ One such paradox, our Garden-of-Eden paradox, can be solved
by varying Legg-Hutter intelligence to be hyperreal-valued
(allowing infinities and infinitesimals).

▶ We submit this as evidence that infinities and infinitesimals
might be inherently necessary to measure intelligence with
total accuracy.


